About this Journal Submit a Manuscript Table of Contents
Applied and Environmental Soil Science
Volume 2012 (2012), Article ID 241535, 13 pages
http://dx.doi.org/10.1155/2012/241535
Research Article

Spectral Estimation of Soil Properties in Siberian Tundra Soils and Relations with Plant Species Composition

1Centre for Geo-Information, Wageningen University, 6708 PB Wageningen, The Netherlands
2Institute of Evolutionary Biology and Environmental Studies, University of Zürich, 8006 Zurich, Switzerland
3Nature Conservation and Plant Ecology, Wageningen University, 6708 PB Wageningen, The Netherlands
4Institute of Biological Problems of the Cryolithozone, 677980 Yakutsk, Russia
5Institute of Physicochemical and Biological Problems of Soil Science, 142290 Pushchino, Russia

Received 13 February 2012; Accepted 18 June 2012

Academic Editor: Raphael Viscarra Rossel

Copyright © 2012 Harm Bartholomeus et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. IPCC, “Climate change 2007: the physical science basis,” in Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, D. Qin, M. Manning, et al., Eds., p. 996, Cambridge University Press, Cambridge, UK, 2007.
  2. E. Post, M. C. Forchhammer, M. S. Bret-Harte et al., “Ecological dynamics across the arctic associated with recent climate change,” Science, vol. 325, no. 5946, pp. 1355–1358, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. ACIA, in Arctic Climate Impact Assessment, Impacts of a Warming Arctic, V. M. Kattsov and E. Källén, Eds., pp. 99–150, Cambridge University Press, Cambridge, UK, 2004.
  4. C. D. Koven, B. Ringeval, P. Friedlingstein et al., “Permafrost carbon-climate feedbacks accelerate global warming,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 36, pp. 14769–14774, 2011.
  5. V. E. Romanovsky, D. S. Drozdov, N. G. Oberman et al., “Thermal state of permafrost in Russia,” Permafrost and Periglacial Processes, vol. 21, no. 2, pp. 136–155, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. D. Blok, M. M. P. D. Heijmans, G. Schaepman-Strub, A. V. Kononov, T. C. Maximov, and F. Berendse, “Shrub expansion may reduce summer permafrost thaw in Siberian tundra,” Global Change Biology, vol. 16, no. 4, pp. 1296–1305, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. E. A. G. Schuur, J. G. Vogel, K. G. Crummer, H. Lee, J. O. Sickman, and T. E. Osterkamp, “The effect of permafrost thaw on old carbon release and net carbon exchange from tundra,” Nature, vol. 459, no. 7246, pp. 556–559, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. N. S. Zimov, S. A. Zimov, A. E. Zimová, G. M. Zimová, V. I. Chuprynin, and F. S. Chapin, “Carbon storage in permafrost and soils of the mammoth tundra-steppe biome: role in the global carbon budget,” Geophysical Research Letters, vol. 36, no. 2, Article ID L02502, 6 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. E. Dorrepaal, S. Toet, R. S. P. Van Logtestijn et al., “Carbon respiration from subsurface peat accelerated by climate warming in the subarctic,” Nature, vol. 460, no. 7255, pp. 616–619, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. R. T. Conant, M. G. Ryan, G. I. Ågren, et al., “Temperature and soil organic matter decomposition rates—synthesis of current knowledge and a way forward,” Global Change Biology, vol. 17, no. 11, pp. 3392–3404, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. W. D. Billings, J. O. Luken, D. A. Mortensen, and K. M. Peterson, “Arctic tundra: a source or sink for atmospheric carbon dioxide in a changing environment?” Oecologia, vol. 53, no. 1, pp. 7–11, 1982. View at Publisher · View at Google Scholar · View at Scopus
  12. W. D. Billings, J. O. Luken, D. A. Mortensen, and K. M. Peterson, “Increasing atmospheric carbon dioxide: possible effects on arctic tundra,” Oecologia, vol. 58, no. 3, pp. 286–289, 1983. View at Scopus
  13. S. E. Hobbie and L. Gough, “Litter decomposition in moist acidic and non-acidic tundra with different glacial histories,” Oecologia, vol. 140, no. 1, pp. 113–124, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. S. E. Hobbie, “Temperature and plant species control over litter decomposition in Alaskan tundra,” Ecological Monographs, vol. 66, no. 4, pp. 503–522, 1996. View at Scopus
  15. J. H. C. Cornelissen, P. M. Van Bodegom, R. Aerts et al., “Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes,” Ecology Letters, vol. 10, no. 7, pp. 619–627, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Gough, G. R. Shaver, J. Carroll, D. L. Royer, and J. A. Laundre, “Vascular plant species richness in Alaskan arctic tundra: the importance of soil pH,” Journal of Ecology, vol. 88, no. 1, pp. 54–66, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. F. S. Chapin, G. R. Shaver, A. E. Giblin, K. J. Nadelhoffer, and J. A. Laundre, “Responses of Arctic tundra to experimental and observed changes in climate,” Ecology, vol. 76, no. 3, pp. 694–711, 1995. View at Scopus
  18. M. D. Walker, C. H. Wahren, R. D. Hollister et al., “Plant community responses to experimental warming across the tundra biome,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 5, pp. 1342–1346, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. D. Blok, G. Schaepman-Strub, H. Bartholomeus, M. M. P. D. Heijmans, T. C. Maximov, and F. Berendse, “The response of Arctic vegetation to the summer climate: relation between shrub cover, NDVI, surface albedo and temperature,” Environmental Research Letters, vol. 6, no. 3, Article ID 035502, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. F. S. Chapin, M. Sturm, M. C. Serreze et al., “Role of land-surface changes in arctic summer warming,” Science, vol. 310, no. 5748, pp. 657–660, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. C. W. Chang, D. A. Laird, M. J. Mausbach, and C. R. Hurburgh, “Near-infrared reflectance spectroscopy—principal components regression analyses of soil properties,” Soil Science Society of America Journal, vol. 65, no. 2, pp. 480–490, 2001. View at Scopus
  22. R. A. Viscarra Rossel, D. J. J. Walvoort, A. B. McBratney, L. J. Janik, and J. O. Skjemstad, “Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties,” Geoderma, vol. 131, no. 1-2, pp. 59–75, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Stevens, B. van Wesemael, H. Bartholomeus, D. Rosillon, B. Tychon, and E. Ben-Dor, “Laboratory, field and airborne spectroscopy for monitoring organic carbon content in agricultural soils,” Geoderma, vol. 144, no. 1-2, pp. 395–404, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. B. Stenberg, R. A. Viscarra Rossel, A. M. Mouazen, and J. Wetterlind, “Visible and Near Infrared Spectroscopy in Soil Science,” Advances in Agronomy, vol. 107, pp. 163–215, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. M. K. Van Der Molen, J. Van Huissteden, F. J. W. Parmentier et al., “The growing season greenhouse gas balance of a continental tundra site in the Indigirka lowlands, NE Siberia,” Biogeosciences, vol. 4, no. 6, pp. 985–1003, 2007. View at Scopus
  26. D. A. Walker, M. K. Reynolds, F. J. A. Daniëls et al., “The Circumpolar Arctic vegetation map,” Journal of Vegetation Science, vol. 16, no. 3, pp. 267–282, 2005. View at Scopus
  27. P. H. Fidêncio, R. J. Poppi, J. C. De Andrade, and H. Cantarella, “Determination of organic matter in soil using near-infrared spectroscopy and partial least squares regression,” Communications in Soil Science and Plant Analysis, vol. 33, no. 9-10, pp. 1607–1615, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Udelhoven, C. Emmerling, and T. Jarmer, “Quantitative analysis of soil chemical properties with diffuse reflectance spectrometry and partial least-square regression: a feasibility study,” Plant and Soil, vol. 251, no. 2, pp. 319–329, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. H. Bartholomeus, L. Kooistra, A. Stevens et al., “Soil Organic Carbon mapping of partially vegetated agricultural fields with imaging spectroscopy,” International Journal of Applied Earth Observation and Geoinformation, vol. 13, no. 1, pp. 81–88, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. R. A. Viscarra Rossel, “ParLeS: software for chemometric analysis of spectroscopic data,” Chemometrics and Intelligent Laboratory Systems, vol. 90, no. 1, pp. 72–83, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. P. J. Curran, “Remote sensing of foliar chemistry,” Remote Sensing of Environment, vol. 30, no. 3, pp. 271–278, 1989. View at Scopus
  32. R. Ihaka and R. Gentleman, “R: a language for data analysis and graphics,” Journal of Computational and Graphical Statistics, vol. 5, no. 3, pp. 299–314, 1996. View at Scopus
  33. C. W. Chang and D. A. Laird, “Near-infrared reflectance spectroscopic analysis of soil C and N,” Soil Science, vol. 167, no. 2, pp. 110–116, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. M. O. Hill and P. Šmilauer, TWINSPAN for Windows Version 2.3, Centre for Ecology & Hydrology and University of South Bohemia, Huntingdon, UK, 2005.
  35. D. Blok, Shrubs in the Cold: Interactions between Vegetation, Permafrost and Climate in Siberian Tundra, Wageningen University, Wageningen, The Netherlands, 2011.
  36. S. A. Zimov, S. P. Davydov, G. M. Zimova et al., “Permafrost carbon: stock and decomposability of a globally significant carbon pool,” Geophysical Research Letters, vol. 33, no. 20, Article ID L20502, 5 pages, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. E. Ben-Dor, “Quantitative remote sensing of soil properties,” Advances in Agronomy, vol. 75, pp. 173–243, 2002. View at Scopus
  38. M. Knadel, A. Thomsen, and M. H. Greve, “Multisensor on-the-go mapping of soil organic carbon content,” Soil Science Society of America Journal, vol. 75, no. 5, pp. 1799–1806, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. G. J. Michaelson, C. L. Ping, and J. M. Kimble, “Carbon storage and distribution in tundra soils of Arctic Alaska, U.S.A,” Arctic and Alpine Research, vol. 28, no. 4, pp. 414–424, 1996. View at Scopus
  40. H. Lee, E. A. G. Schuur, K. S. Inglett, M. Lavoie, and J. P. Chanton, “The rate of permafrost carbon release under aerobic and anaerobic conditions and its potential effects on climate,” Global Change Biology, vol. 18, no. 2, pp. 515–527, 2012. View at Publisher · View at Google Scholar · View at Scopus
  41. P. Dunfield, R. knowles, R. Dumont, and T. R. Moore, “Methane production and consumption in temperate and subarctic peat soils: response to temperature and pH,” Soil Biology and Biochemistry, vol. 25, no. 3, pp. 321–326, 1993. View at Scopus
  42. R. T. Williams and R. L. Crawford, “Methanogenic Bacteria, including an acid-tolerant strain, from peatlands,” Applied and Environmental Microbiology, vol. 50, no. 6, pp. 1542–1544, 1985.
  43. M. S. Bret-Harte, G. R. Shaver, J. P. Zoerner et al., “Developmental plasticity allows betula nana to dominate tundra subjected to an altered environment,” Ecology, vol. 82, no. 1, pp. 18–32, 2001. View at Scopus
  44. D. Blok, U. Sass-Klaassen, G. Schaepman-Strub, M. M. P. D. Heijmans, P. Sauren, and F. Berendse, “What are the main climate drivers for shrub growth in Northeastern Siberian tundra?” Biogeosciences, vol. 8, no. 5, pp. 1169–1179, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. I. H. Myers-Smith, B. C. Forbes, M. Wilmking et al., “Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities,” Environmental Research Letters, vol. 6, no. 4, Article ID 045509, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. D. Blok, G. Schaepman-Strub, M. Heijmans et al., Climate Change Effects on Vegetation in Northeastern Siberian Tundra—How Does Shrub Growth Relate to Local Climate and What Are Potential Effects of Shurb Expansion on Permafrost Thawing?EGU General Assembly, Vienna, Austria, 2010.
  47. F. E. Nelson, N. I. Shiklomanov, G. R. Mueller, K. M. Hinkel, D. A. Walker, and J. G. Bockheim, “Estimating active-layer thickness over a large region: Kuparuk river basin, Alaska, U.S.A,” Arctic and Alpine Research, vol. 29, no. 4, pp. 367–378, 1997. View at Scopus
  48. G. Schaepman-Strub, J. Limpens, M. Menken, H. M. Bartholomeus, and M. E. Schaepman, “Towards spatial assessment of carbon sequestration in peatlands: spectroscopy based estimation of fractional cover of three plant functional types,” Biogeosciences, vol. 6, no. 2, pp. 275–284, 2009. View at Scopus