About this Journal Submit a Manuscript Table of Contents
Applied and Environmental Soil Science
Volume 2012 (2012), Article ID 274903, 12 pages
http://dx.doi.org/10.1155/2012/274903
Research Article

The Effects of Spectral Pretreatments on Chemometric Analyses of Soil Profiles Using Laboratory Imaging Spectroscopy

1Environmental Remote Sensing and Geoinformatics, Trier University, 54286 Trier, Germany
2Lehrstuhl für Bodenkunde, Technische Universität München, 85350 Freising-Weihenstephan, Germany

Received 17 February 2012; Revised 11 May 2012; Accepted 18 September 2012

Academic Editor: Raphael Viscarra Rossel

Copyright © 2012 Henning Buddenbaum and Markus Steffens. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. R. Stoner and M. F. Baumgardner, “Characteristic variations in reflectance of surface soils,” Soil Science Society of America Journal, vol. 45, no. 6, pp. 1161–1165, 1981. View at Scopus
  2. E. Ben-Dor, S. Chabrillat, J. A. M. Demattê et al., “Using Imaging Spectroscopy to study soil properties,” Remote Sensing of Environment, vol. 113, pp. S38–S55, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Vohland and C. Emmerling, “Determination of total soil organic C and hot water-extractable C from VIS-NIR soil reflectance with partial least squares regression and spectral feature selection techniques,” European Journal of Soil Science, vol. 62, no. 4, pp. 598–606, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. E. Ben-Dor, D. Heller, and A. Chudnovsky, “A novel method of classifying soil profiles in the field using optical means,” Soil Science Society of America Journal, vol. 72, no. 4, pp. 1113–1123, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Buddenbaum and M. Steffens, “Laboratory imaging spectroscopy of soil profiles,” Journal of Spectral Imaging, vol. 2, pp. 1–5, 2011. View at Publisher · View at Google Scholar
  6. H. Buddenbaum and M. Steffens, “Mapping the distribution of chemical properties in soil profiles using laboratory imaging spectroscopy, SVM and PLS regression,” EARSeL EProceedings, vol. 11, no. 1, pp. 25–32, 2012.
  7. F. A. Kruse, “Identification and mapping of minerals in drill core using hyperspectral image analysis of infrared reflectance spectra,” International Journal of Remote Sensing, vol. 17, no. 9, pp. 1623–1632, 1996. View at Scopus
  8. R. A. Viscarra Rossel and R. Webster, “Discrimination of Australian soil horizons and classes from their visible-near infrared spectra,” European Journal of Soil Science, vol. 62, no. 4, pp. 637–647, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. G. M. Vasques, S. Grunwald, and J. O. Sickman, “Comparison of multivariate methods for inferential modeling of soil carbon using visible/near-infrared spectra,” Geoderma, vol. 146, no. 1-2, pp. 14–25, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Stevens, T. Udelhoven, A. Denis et al., “Measuring soil organic carbon in croplands at regional scale using airborne imaging spectroscopy,” Geoderma, vol. 158, no. 1-2, pp. 32–45, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. A. M. Mouazen, B. Kuang, J. De Baerdemaeker, and H. Ramon, “Comparison among principal component, partial least squares and back propagation neural network analyses for accuracy of measurement of selected soil properties with visible and near infrared spectroscopy,” Geoderma, vol. 158, no. 1-2, pp. 23–31, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Farifteh, F. Van der Meer, C. Atzberger, and E. J. M. Carranza, “Quantitative analysis of salt-affected soil reflectance spectra: a comparison of two adaptive methods (PLSR and ANN),” Remote Sensing of Environment, vol. 110, no. 1, pp. 59–78, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. K. D. Shepherd and M. G. Walsh, “Development of reflectance spectral libraries for characterization of soil properties,” Soil Science Society of America Journal, vol. 66, no. 3, pp. 988–998, 2002. View at Scopus
  14. C. Atzberger, M. Guérif, F. Baret, and W. Werner, “Comparative analysis of three chemometric techniques for the spectroradiometric assessment of canopy chlorophyll content in winter wheat,” Computers and Electronics in Agriculture, vol. 73, no. 2, pp. 165–173, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. C. W. Chang, D. A. Laird, M. J. Mausbach, and C. R. Hurburgh, “Near-infrared reflectance spectroscopy—principal components regression analyses of soil properties,” Soil Science Society of America Journal, vol. 65, no. 2, pp. 480–490, 2001. View at Scopus
  16. M. Schlerf, C. Atzberger, and J. Hill, “Remote sensing of forest biophysical variables using HyMap imaging spectrometer data,” Remote Sensing of Environment, vol. 95, no. 2, pp. 177–194, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. R. A. Viscarra Rossel and T. Behrens, “Using data mining to model and interpret soil diffuse reflectance spectra,” Geoderma, vol. 158, no. 1-2, pp. 46–54, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Wold, M. Sjöström, and L. Eriksson, “PLS-regression: a basic tool of chemometrics,” Chemometrics and Intelligent Laboratory Systems, vol. 58, no. 2, pp. 109–130, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Wold, J. Trygg, A. Berglund, and H. Antti, “Some recent developments in PLS modeling,” Chemometrics and Intelligent Laboratory Systems, vol. 58, no. 2, pp. 131–150, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. E. Ben-Dor, Y. Inbar, and Y. Chen, “The reflectance spectra of organic matter in the visible near-infrared and short wave infrared region (400–2500 nm) during a controlled decomposition process,” Remote Sensing of Environment, vol. 61, no. 1, pp. 1–15, 1997. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Udelhoven, C. Emmerling, and T. Jarmer, “Quantitative analysis of soil chemical properties with diffuse reflectance spectrometry and partial least-square regression: a feasibility study,” Plant and Soil, vol. 251, no. 2, pp. 319–329, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. B. Stenberg and R. A. Viscarra Rossel, “Diffuse reflectance spectroscopy for high-resolution soil sensing,” in Proximal Soil Sensing, R. A. Viscarra Rossel, B. A. McBratney, and B. Minasny, Eds., pp. 29–47, Springer Science+Business, Dordrecht, The Netherlands, 2010.
  23. W. D. Hively, G. W. McCarty, J. B. Reeves, et al., “Use of airborne hyperspectral imagery to map soil properties in tilled agricultural fields,” Applied and Environmental Soil Science, vol. 2011, Article ID 358193, 13 pages, 2011. View at Publisher · View at Google Scholar
  24. Å. Rinnan, F. V. D. Berg, and S. B. Engelsen, “Review of the most common pre-processing techniques for near-infrared spectra,” Trends in Analytical Chemistry, vol. 28, no. 10, pp. 1201–1222, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. O. P. Mehra and M. L. Jackson, “Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate,” in Proceedings of the 7th National Conference on Clays and Clay Minerals, pp. 317–327, 1960.
  26. D. R. Peddle, H. P. White, R. J. Soffer, J. R. Miller, and E. F. LeDrew, “Reflectance processing of remote sensing spectroradiometer data,” Computers and Geosciences, vol. 27, no. 2, pp. 203–213, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data by simplified least squares procedures,” Analytical Chemistry, vol. 36, no. 8, pp. 1627–1639, 1964. View at Scopus
  28. R. J. Barnes, M. S. Dhanoa, and S. J. Lister, “Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra,” Applied Spectroscopy, vol. 43, no. 5, pp. 772–777, 1989. View at Scopus
  29. O. Otto, Statistics and Computer Application in Analytical Chemistry, Wiley-VCH, Weinheim, Germany, 1998.
  30. D. Ertlen, D. Schwartz, M. Trautmann, R. Webster, and D. Brunet, “Discriminating between organic matter in soil from grass and forest by near-infrared spectroscopy,” European Journal of Soil Science, vol. 61, no. 2, pp. 207–216, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. B. L. Becker, D. P. Lusch, and J. Qi, “Identifying optimal spectral bands from in situ measurements of Great Lakes coastal wetlands using second-derivative analysis,” Remote Sensing of Environment, vol. 97, no. 2, pp. 238–248, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. Y. Li, T. H. Demetriades-Shah, E. T. Kanemasu, J. K. Shultis, and M. B. Kirkham, “Use of second derivatives of canopy reflectance for monitoring prairie vegetation over different soil backgrounds,” Remote Sensing of Environment, vol. 44, no. 1, pp. 81–87, 1993. View at Scopus
  33. W. Kessler, Multivariate Datenanalyse Für Die Pharma-, Bio. Und Prozessanalytik, Wiley-VCH, Weinheim, Germany, 2007.
  34. R. F. Kokaly and R. N. Clark, “Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression,” Remote Sensing of Environment, vol. 67, no. 3, pp. 267–287, 1999. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Schlerf, C. Atzberger, J. Hill, H. Buddenbaum, W. Werner, and G. Schüler, “Retrieval of chlorophyll and nitrogen in Norway spruce (Picea abies L. Karst.) using imaging spectroscopy,” International Journal of Applied Earth Observation and Geoinformation, vol. 12, no. 1, pp. 17–26, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. B. Datt, “Visible/near infrared reflectance and chlorophyll content in Eucalyptus leaves,” International Journal of Remote Sensing, vol. 20, no. 14, pp. 2741–2759, 1999. View at Scopus
  37. H. Martens and E. Stark, “Extended multiplicative signal correction and spectral interference subtraction: new preprocessing methods for near infrared spectroscopy,” Journal of Pharmaceutical and Biomedical Analysis, vol. 9, no. 8, pp. 625–635, 1991. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Vohland, C. Bossung, and H. C. Fründ, “A spectroscopic approach to assess trace—heavy metal contents in contaminated floodplain soils via spectrally active soil components,” Journal of Plant Nutrition and Soil Science, vol. 172, no. 2, pp. 201–209, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. D. J. Brus, B. Kempen, and G. B. M. Heuvelink, “Sampling for validation of digital soil maps,” European Journal of Soil Science, vol. 62, no. 3, pp. 394–407, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. R. A. V. Rossel and C. Chen, “Digitally mapping the information content of visible-near infrared spectra of surficial Australian soils,” Remote Sensing of Environment, vol. 115, no. 6, pp. 1443–1455, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. L. Kooistra, R. Wehrens, R. S. E. W. Leuven, and L. M. C. Buydens, “Possibilities of visible-near-infrared spectroscopy for the assessment of soil contamination in river floodplains,” Analytica Chimica Acta, vol. 446, no. 1-2, pp. 97–105, 2001. View at Publisher · View at Google Scholar · View at Scopus