About this Journal Submit a Manuscript Table of Contents
Applied and Environmental Soil Science
Volume 2012 (2012), Article ID 539582, 17 pages
http://dx.doi.org/10.1155/2012/539582
Research Article

N, P, and K Budgets and Changes in Selected Topsoil Nutrients over 10 Years in a Long-Term Experiment with Conventional and Organic Crop Rotations

Arable Crops Division, Norwegian Institute for Agricultural and Environmental Research, 2849 Kapp, Norway

Received 2 December 2011; Accepted 30 April 2012

Academic Editor: Philip White

Copyright © 2012 Audun Korsaeth. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Eltun, “The Apelsvoll cropping system experiment. III. Yield and grain quality of cereals,” Norwegian Journal of Agriculture, vol. 10, no. 1, pp. 7–22, 1996.
  2. A. Korsaeth and R. Eltun, “Nitrogen mass balances in conventional, integrated and ecological cropping systems and the relationship between balance calculations and nitrogen runoff in an 8-year field experiment in Norway,” Agriculture, Ecosystems and Environment, vol. 79, no. 2-3, pp. 199–214, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Lien, O. Flaten, A. Korsaeth et al., “Comparison of risk in organic, integrated and conventional cropping systems in Eastern Norway,” Journal of Farm Management, vol. 12, no. 7, pp. 385–401, 2006.
  4. T. A. Breland and R. Eltun, “Soil microbial biomass and mineralization of carbon and nitrogen in ecological, integrated and conventional forage and arable cropping systems,” Biology and Fertility of Soils, vol. 30, no. 3, pp. 193–201, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Riley, R. Pommeresche, R. Eltun, S. Hansen, and A. Korsaeth, “Soil structure, organic matter and earthworm activity in a comparison of cropping systems with contrasting tillage, rotations, fertilizer levels and manure use,” Agriculture, Ecosystems and Environment, vol. 124, no. 3-4, pp. 275–284, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Korsaeth, “Relations between nitrogen leaching and food productivity in organic and conventional cropping systems in a long-term field study,” Agriculture, Ecosystems and Environment, vol. 127, no. 3-4, pp. 177–188, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. B. T. Christensen and A. E. Johnston, “Chapter 18 Soil organic matter and soil quality-Lessons learned from long-term experiments at Askov and Rothamsted,” Developments in Soil Science, vol. 25, no. C, pp. 399–430, 1997. View at Publisher · View at Google Scholar · View at Scopus
  8. E. Ekeberg and H. Riley, “The long-term fertilizer trials at Møystad, S:E: Norway,” SP Report 29, 100th Anniversary Workshop Askov Experimental Station, 1995.
  9. N. A. Fettell and H. S. Gill, “Long-term effects of tillage, stubble, and nitrogen management on properties of a red-brown earth,” Australian Journal of Experimental Agriculture, vol. 35, no. 7, pp. 923–928, 1995. View at Scopus
  10. P. R. Poulton, “The importance of long-term trials in understanding sustainable farming systems: the Rothamsted experience,” Australian Journal of Experimental Agriculture, vol. 35, no. 7, pp. 825–834, 1995. View at Scopus
  11. W. R. Raun, G. V. Johnson, S. B. Phillips, and R. L. Westerman, “Effect of long-term N fertilization on soil organic C and total N in continuous wheat under conventional tillage in Oklahoma,” Soil and Tillage Research, vol. 47, no. 3-4, pp. 323–330, 1998. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Leifeld, R. Reiser, and H. R. Oberholzer, “Consequences of conventional versus organic farming on soil carbon: results from a 27-year field experiment,” Agronomy Journal, vol. 101, no. 5, pp. 1204–1218, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. C. F. Drury, T. O. Oloya, D. J. McKenney, E. G. Gregorich, C. S. Tan, and C. L. vanLuyk, “Long-term effects of fertilization and rotation on denitrification and soil carbon,” Soil Science Society of America Journal, vol. 62, no. 6, pp. 1572–1579, 1998. View at Scopus
  14. C. M. Penfold, M. S. Miyan, T. G. Reeves, and I. T. Grierson, “Biological farming for sustainable agricultural production,” Australian Journal of Experimental Agriculture, vol. 35, no. 7, pp. 849–856, 1995. View at Scopus
  15. P. M. Berry, E. A. Stockdale, R. Sylvester-Bradley et al., “N, P and K budgets for crop rotations on nine organic farms in the UK,” Soil Use and Management, vol. 19, no. 2, pp. 112–118, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. O. Oenema, H. Kros, and W. De Vries, “Approaches and uncertainties in nutrient budgets: implications for nutrient management and environmental policies,” European Journal of Agronomy, vol. 20, no. 1-2, pp. 3–16, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. O. Oenema and M. Heinen, “Uncertainties in nutrient budget due to biases and errors,” in Nutrient Disequilibria in Agroecosystems: Concepts and Case Studies, E. M. A. Smaling, O. Oenema, and L. O. Fresco, Eds., pp. 75–97, CAB International, Wallingford, UK, 1999.
  18. W. De Vries, J. Kros, O. Oenema, and J. De Klein, “Uncertainties in the fate of nitrogen II: a quantitative assessment of the uncertainties in major nitrogen fluxes in the Netherlands,” Nutrient Cycling in Agroecosystems, vol. 66, no. 1, pp. 71–102, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Korsaeth, “Runoff and leaching losses of N, P, and K in the period 2001–2011 in a long-term experiment with conventional and organic crop rotations,” In press.
  20. WRB, World Reference Base for Soil Resources, FAO, Rome, Italy, 1998.
  21. H. Riley and R. Eltun, “The Apelsvoll cropping system experiment. II. Soil characteristics,” Norwegian Journal of Agricultural Sciences, vol. 8, pp. 317–333, 1994.
  22. H. Egnér, H. Riehm, and W. R. Domingo, “Untersuchungen über die chemische Bodenanalyse als Grundlage für die Beurteilung de Nährstoffzustandes der Böden. II,” Kungliga Lantbrukshögskolans Annaler, vol. 26, pp. 199–215, 1960.
  23. W. Aas, S. Solberg, S. Manø, and K. E. Yttrei, “Overvåking av langtransportert forurenset luft og nedbør,” Report NILU OR 22/2007, Kjeller, Norway, 2007.
  24. IPCC National Greenhouse Gas Inventories Programme, “Agriculture, forestry and other land use,” in IPCC Guidelines for National Greenhouse Gas Inventories, H. S. Eggleston, L. Buendia, K. Miwa, T. Ngara, and K. Tanabe, Eds., vol. 4, chapter 11, pp. 1–11, IGES, Japan, 2006.
  25. L. Larsson, M. Ferm, Å. Kasimir-Klemedtsson, and L. Klemedtsson, “Ammonia and nitrous oxide emissions from grass and alfalfa mulches,” Nutrient Cycling in Agroecosystems, vol. 51, no. 1, pp. 41–46, 1998. View at Publisher · View at Google Scholar · View at Scopus
  26. K. A. Gomez and A. A. Gomez, Statistical Procedures for Agricultural Research, Wiley & Sons, New York, NY, USA, 2nd edition, 1984.
  27. H. Riley and E. Ekeberg, “Effects of depth and time of ploughing on yields of spring cereals and potatoes and on soil properties of a morainic loam soil,” Acta Agriculturae Scandinavica - Section B Soil and Plant Science, vol. 48, no. 4, pp. 193–200, 1998. View at Scopus
  28. R. Eltun, A. Korsaeth, and O. Nordheim, “A comparison of environmental, soil fertility, yield, and economical effects in six cropping systems based on an 8-year experiment in Norway,” Agriculture, Ecosystems and Environment, vol. 90, no. 2, pp. 155–168, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. L. Bergström, H. Kirchmann, H. Aronsson, G. Torstensson, and L. Mattsson, “Use Efficiency and Leaching of Nutrients in Organic and Conventional Cropping Systems in Sweden,” in Organic Crop Production—Ambitions and Limitations, H. Kirchmann and L. Bergström, Eds., pp. 117–141, Springer, New York, NY, USA, 2008.
  30. H. Riley and M. Bakkegard, “Declines of soil organic matter content under arable cropping in southeast Norway,” Acta Agriculturae Scandinavica Section B, vol. 56, no. 3, pp. 217–223, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. G. Torstensson, H. Aronsson, and L. Bergstrom, “Nutrient use efficiencies and leaching of organic and conventional cropping systems in Sweden,” Agronomy Journal, vol. 98, no. 3, pp. 603–615, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. D. P. Heenan, W. J. McGhie, F. M. Thomson, and K. Y. Chan, “Decline in soil organic carbon and total nitrogen in relation to tillage, stubble management, and rotation,” Australian Journal of Experimental Agriculture, vol. 35, no. 7, pp. 877–884, 1995. View at Scopus
  33. G. Uhlen, “Long-term effects of fertilizers, manure, straw and crop rotation on total-N and total-C in soil,” Acta Agriculturae Scandinavica, Section B, vol. 41, pp. 119–127, 1991.
  34. H. Steinshamn, E. Thuen, M. A. Bleken, U. T. Brenoe, G. Ekerholt, and C. Yri, “Utilization of nitrogen (N) and phosphorus (P) in an organic dairy farming system in Norway,” Agriculture, Ecosystems and Environment, vol. 104, no. 3, pp. 509–522, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. E. Syväsalo, K. Regina, E. Turtola, R. Lemola, and M. Esala, “Fluxes of nitrous oxide and methane, and nitrogen leaching from organically and conventionally cultivated sandy soil in western Finland,” Agriculture, Ecosystems and Environment, vol. 113, no. 1–4, pp. 342–348, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. D. J. Greenwood, F. Gastal, G. Lemaire, A. Draycott, P. Millard, and J. J. Neeteson, “Growth rate and % N of field grown crops: theory and experiments,” Annals of Botany, vol. 67, no. 2, pp. 181–190, 1991. View at Scopus
  37. F. E. Khasawneh and E. C. Doll, “The use of phosphate rock for direct application to soils,” Advances in Agronomy, vol. 30, no. C, pp. 159–206, 1979. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Odlare, M. Pell, and K. Svensson, “Changes in soil chemical and microbiological properties during 4 years of application of various organic residues,” Waste Management, vol. 28, no. 7, pp. 1246–1253, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. H. Bengtsson, I. Öborn, S. Jonsson, I. Nilsson, and A. Andersson, “Field balances of some mineral nutrients and trace elements in organic and conventional dairy farming—a case study at Örjebyn, Sweden,” European Journal of Agronomy, vol. 20, no. 1-2, pp. 101–116, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. J. Verloop, J. Oenema, S. L. G. Burgers, H. F. M. Aarts, and H. van Keulen, “P-equilibrium fertilization in an intensive dairy farming system: effects on soil-P status, crop yield and P leaching,” Nutrient Cycling in Agroecosystems, vol. 87, no. 3, pp. 369–382, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. H. Riley, “Long-term fertilizer trials on loam soil at Møystad, south-eastern Norway: crop yields, nutrient balances and soil chemical analyses from 1983 to 2003,” Acta Agriculturae Scandinavica Section B, vol. 57, no. 2, pp. 140–154, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. L. Taiz and E. Zeiger, Plant Physiology, Sinauer Associates, Sunderland, Mass, USA, 3rd edition, 2002.
  43. S. Mathews, J. P. I. Tritschler, and S. C. Miyasaka, “Phosphorus management and sustainability,” in Grass for Daily Cattle, J. H. Cherney and D. J. R. Cherney, Eds., pp. 193–222, CABI International, Wallingford, UK, 1998.
  44. S. D. Heming, “Potassium balances for arable soils in southern England 1986–1999,” Soil Use and Management, vol. 20, no. 4, pp. 410–417, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. L. Blake, S. Mercik, M. Koerschens et al., “Potassium content in soil, uptake in plants and the potassium balance in three European long-term field experiments,” Plant and Soil, vol. 216, no. 1-2, pp. 1–14, 1999. View at Scopus
  46. I. Öborn, Y. Andrist-Rangel, M. Askekaard, C. A. Grant, C. A. Watson, and A. C. Edwards, “Critical aspects of potassium management in agricultural systems,” Soil Use and Management, vol. 21, pp. 102–112, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. A. F. Øgaard and S. Hansen, “Potassium uptake and requirement in organic grassland farming,” Nutrient Cycling in Agroecosystems, vol. 87, no. 1, pp. 137–149, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. Y. Andrist-Rangel, A. C. Edwards, S. Hillier, and I. Öborn, “Long-term K dynamics in organic and conventional mixed cropping systems as related to management and soil properties,” Agriculture, Ecosystems and Environment, vol. 122, no. 4, pp. 413–426, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. J. Holmqvist, A. F. Øgaard, I. Öborn, A. C. Edwards, L. Mattsson, and H. Sverdrup, “Application of the Profile model to estimate potassium release from mineral weathering in Northern European agricultural soils,” European Journal of Agronomy, vol. 20, no. 1-2, pp. 149–163, 2003. View at Publisher · View at Google Scholar · View at Scopus
  50. H. Kuhlmann, “Importance of the subsoil for the K nutrition of crops,” Plant and Soil, vol. 127, no. 1, pp. 129–136, 1990. View at Publisher · View at Google Scholar · View at Scopus
  51. L. E. De-Bashan and Y. Bashan, “Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997–2003),” Water Research, vol. 38, no. 19, pp. 4222–4246, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. A.-G. Roer, A. Korsaeth, T. M. Henriksen, O. Michelsen, and A. H. Strømman, “The influence of system boundaries on life cycle assessment of grain production in central southeast Norway,” Agricultural Systems, vol. 111, pp. 75–84, 2012. View at Publisher · View at Google Scholar · View at Scopus