About this Journal Submit a Manuscript Table of Contents
Applied and Environmental Soil Science
Volume 2012 (2012), Article ID 593623, 13 pages
http://dx.doi.org/10.1155/2012/593623
Research Article

Effects of Monoculture, Crop Rotation, and Soil Moisture Content on Selected Soil Physicochemical and Microbial Parameters in Wheat Fields

1Western Cape Department of Agriculture, Institute for Plant Production, Private Bag X1, Elsenburg 7607, South Africa
2Biometry Unit, Agricultural Research Council, Private Bag X5013, Stellenbosch 7599, South Africa
3Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa

Received 28 June 2012; Accepted 28 August 2012

Academic Editor: D. L. Jones

Copyright © 2012 A. Marais et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. E. Pankhurst, “Evaluation of soil biological properties as potential bioindicators of soil health,” Australian Journal of Experimental Agriculture, vol. 35, no. 7, pp. 1015–1028, 1995. View at Scopus
  2. P. J. Bottomley, “Microbial ecology,” in Principles and Applications of Soil Microbiology, D. M. Sylvia, J. J. Fuhrmann, P. G. Hartel, and D. A. Zuberer, Eds., pp. 222–241, Pearson Prentice Hall, New Jersey, NJ, USA, 2nd edition, 2005.
  3. Anon, “NRCS: Soil Biology and Land Management Soil Quality,” Soil Biology, Technical Note No. 4, 2004, http://soils.usda.gov/sqi.
  4. J. A. W. Morgan, G. D. Bending, and P. J. White, “Biological costs and benefits to plant-microbe interactions in the rhizosphere,” Journal of Experimental Botany, vol. 56, no. 417, pp. 1729–1739, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. J. C. Moore, K. McCann, and P. C. de Ruiter, “Soil rhizospere food webs, their stability, and implications for soil processes in ecosystems,” in The Rhizospere—An Ecological Perspective, Z. G. Cardon and J. L. Whitbeck, Eds., pp. 101–125, Elsevier, Burlington, Mass, USA, 2007.
  6. A. D. Kent and E. W. Triplett, “Microbial communities and their interactions in soil and rhizosphere ecosystems,” Annual Review of Microbiology, vol. 56, pp. 211–236, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. D. V. Murphy, E. A. Stockdale, P. C. Brookes, and K. W. T. Goulding, “Impact of microorganisms on chemical transformations in soil,” in Soil Biological Fertility—A Key to Sustainable Land Use in Agriculture, L. K. Abbot and D. V. Murphy, Eds., pp. 37–59, Kluwer Academic, Dodrecht, The Netherlands, 2003.
  8. K. E. Dunfield and J. J. Germida, “Seasonal changes in the rhizosphere microbial communities associated with field-grown enetically modified canola (Brassica napus),” Applied and Environmental Microbiology, vol. 69, no. 12, pp. 7310–7318, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. P. Marschner, C. H. Yang, R. Lieberei, and D. E. Crowley, “Soil and plant specific effects on bacterial community composition in the rhizosphere,” Soil Biology and Biochemistry, vol. 33, no. 11, pp. 1437–1445, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. M. D. C. A. González-Chávez, J. A. Aitkenhead-Peterson, T. J. Gentry, D. Zuberer, F. Hons, and R. Loeppert, “Soil microbial community, C, N, and P responses to long-term tillage and crop rotation,” Soil and Tillage Research, vol. 106, no. 2, pp. 285–293, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Doi and S. L. Ranamukhaarachchi, “Correlations between soil microbial and physicochemical variations in a rice paddy: implications for assessing soil health,” Journal of Biosciences, vol. 34, no. 6, pp. 969–976, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. A. J. R. Reinecke and S. A. Reinecke, “Biodiversity in agricultural soils, sustainable plant production and control of plant pathogens,” South African Journal of Science and Technology, vol. 29, no. 2, pp. 77–96, 2010.
  13. V. Torsvik, J. Goksoyr, and F. L. Daae, “High diversity in DNA of soil bacteria,” Applied and Environmental Microbiology, vol. 56, no. 3, pp. 782–787, 1990. View at Scopus
  14. F. V. Wintzingerode, U. B. Göbel, and E. Stackebrandt, “Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis,” FEMS Microbiology Reviews, vol. 21, no. 3, pp. 213–229, 1997. View at Publisher · View at Google Scholar · View at Scopus
  15. Ö. Ínceoğlu, E. F. Hoogwout, P. Hill, and J. D. van Elsas, “Effect of DNA extraction method on the apparent microbial diversity of soil,” Applied and Environmental Microbiology, vol. 76, no. 10, pp. 3378–3382, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. R. I. Amann, W. Ludwig, and K. H. Schleifer, “Phylogenetic identification and in situ detection of individual microbial cells without cultivation,” Microbiological Reviews, vol. 59, no. 1, pp. 143–169, 1995. View at Scopus
  17. N. Hall, “Advanced sequencing technologies and their wider impact in microbiology,” Journal of Experimental Biology, vol. 210, no. 9, pp. 1518–1525, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Ogram, H. Castro, A. Chauhan, et al., “Methods of soil microbial community analysis,” in Manual of Environmental Microbiology, J. C. Hurst, J. L. Garland, and A. L. Mills, Eds., pp. 652–662, ASM Press, Washington, DC, USA, 3rd edition, 2007.
  19. R. A. Olsen and L. R. Bakken, “Viability of soil bacteria: optimization of plate-counting technique and comparison between total counts and plate counts within different size groups,” Microbial Ecology, vol. 13, no. 1, pp. 59–74, 1987. View at Publisher · View at Google Scholar · View at Scopus
  20. R. J. Ellis, P. Morgan, A. J. Weightman, and J. C. Fry, “Cultivation-dependent and -independent approaches for determining bacterial diversity in heavy-metal-contaminated soil,” Applied and Environmental Microbiology, vol. 69, no. 6, pp. 3223–3230, 2003. View at Scopus
  21. S. L. Edenborn, A. J. Sextone, Y. Sutanto, and J. A. Chapman, “Relationships among contrasting measurements of microbial dynamics in pasture and organic farm soils,” Applied and Environmental Soil Science, vol. 2011, Article ID 537459, 10 pages, 2011. View at Publisher · View at Google Scholar
  22. A. C. Kennedy and K. L. Smith, “Soil microbial diversity and the sustainability of agricultural soils,” Plant and Soil, vol. 170, no. 1, pp. 75–86, 1995. View at Publisher · View at Google Scholar · View at Scopus
  23. A. A. Yusuf, E. N. O. Iwuafor, R. C. Abaidoo, O. O. Olufajo, and N. Sanginga, “Effect of crop rotation and nitrogen fertilization on yield and nitrogen efficiency in maize in the northern Guinea savanna of Nigeria,” African Journal of Agricultural Research, vol. 4, no. 10, pp. 913–921, 2009. View at Scopus
  24. P. M. Carr, G. B. Martin, and R. D. Horsley, “Impact of tillage and crop rotation on spring wheat yield: II. Rotation effect,” Crop Management, 2006. View at Publisher · View at Google Scholar
  25. C. N. Macvivar, R. F. Loxton, J. J. N. Lambrechts, J. le Roux, and J. M. de Villiers, Soil Classification: A Binomial System for South Africa, Department of Agricultural Technical Services, Pretoria, South Africa, 1977.
  26. Anon, Handbook of Standard Soil Testing Methods for Advisory Purposes, Complied by the Non-Affiliated Soil Analysis Work Committee, Soil, Science Society of South Africa, Pretoria, South Africa, 1990.
  27. K. R. du Plessis, A. Botha, L. Joubert, R. Bester, W. J. Conradie, and G. M. Wolfaardt, “Response of the microbial community to copper oxychloride in acidic sandy loam soil,” Journal of Applied Microbiology, vol. 98, no. 4, pp. 901–909, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. R. M. Atlas, “Alphabetical listing of media,” in Handbook of Microbiological Media, L. C. Parks, Ed., p. 666, CRC Press, London, UK, 1993.
  29. J. J. Worrall, “Media for selective isolation of hymenomycetes,” Mycologia, vol. 83, no. 3, pp. 296–302, 1991. View at Scopus
  30. R. Rønn, F. Ekelund, and S. Christensen, “Optimizing soil extract and broth media for MPN-enumeration of naked amoebae and heterotrophic flagellates in soil,” Pedobiologia, vol. 39, no. 1, pp. 10–19, 1995. View at Scopus
  31. A. M. Briones and W. Reichardt, “Estimating microbial population counts by “most probable number” using Microsoft Excel,” Journal of Microbiological Methods, vol. 35, no. 2, pp. 157–161, 1999. View at Publisher · View at Google Scholar · View at Scopus
  32. J. L. Garland, “Potential and limitations of BIOLOG for microbialcommunity analysis,” in Proceedings of the 8th International Symposium on Microbial Ecology Atlantic Canada Society for Microbial Ecology, C. R. Bell, M. Brylinsky, and P. Johnson-Green, Eds., pp. 1–7, Society for Microbial Ecology, 1999.
  33. D. Parkinson, T. R. G. Gray, and S. T. Williams, Eds., Methods for Studying the Ecology of Soil Micro-Organisms, Blackwell Scientific, Oxford, UK, 1971.
  34. A. Marais, M. B. Hardy, C. D. Morris, and A. Botha, “Measuring culturable microbial populations and filamentous microbial growth in soil of wheat plots subjected to crop rotation and monoculture,” South African Journal of Plant and Soil, vol. 27, no. 2, pp. 133–141, 2010. View at Scopus
  35. AOAC, Official Methods of Analysis, Association of Official Analytical Chemists, Arlington, Va, USA, 13th edition, 1985.
  36. L. Lisle, F. Lefroy, G. Anderson, and G. Blair, “Methods for the measurement of sulphur in plants and soils,” Sulphur in Agriculture, vol. 18, no. 4, pp. 45–54, 1994.
  37. SAS Institute Inc, SAS Version 9.2, SAS Institute Inc, SAS Campus Drive, 6 Cary, North Carolina 27513, 2008.
  38. S. S. Shapiro and M. B. Wilk, “An analysis of variance test for normality 8 (complete samples),” Biometrika, vol. 52, pp. 591–561, 1965.
  39. R. L. Ott, An Introduction to Statistical Methods and Data Analysis, Duxbury Press, Belmont, Calif, USA, 1993.
  40. Anon, XLStat, Addinsoft, Paris, France, 2011.
  41. A. C. Rencher, Methods of Multivariate Analysis [Metodes vir Multiveranderlike Analise], John Wiley & Sons, New York, NY, USA, 2nd edition, 2002, Simultaneously printed in Canada.
  42. V. J. Easton and J. H. McColl, Steps Statistic Glossary Version 1.1, 1997, http://www.stats.gla.ac.uk/steps/glossary/anova.html#intern.
  43. K. Mengel and E. A. Kirkby, Principles of Plant Nutrition, International Potash Institute, Berne, Switzerland, 2nd edition, 1979.
  44. T. M. Little and F. J. Hills, Statistical Methods in Agricultural Experiment, University of California, Davis, Calif, USA, 1972.
  45. H. O. Venterink, T. E. Davidsson, K. Kiehl, and L. Leonardson, “Impact of drying and re-wetting on N, P and K dynamics in a wetland soil,” Plant and Soil, vol. 243, no. 1, pp. 119–130, 2002. View at Publisher · View at Google Scholar · View at Scopus
  46. P. H. Graham, “Biological dinitrogen fixation: symbiotic,” in Principles and Applications of Soil Microbiology, D. M. Sylvia, J. J. Fuhrmann, P. G. Hartel, and D. A. Zuberer, Eds., pp. 222–241, Pearson Prentice Hall, New Jersey, NJ, USA, 2nd edition, 2005.
  47. M. B. Hardy, “An investigation into the production of eight crop rotation systems, including wheat, canola, lupines and pasture species in the Swartland, Western Cape,” Plant Production Yearly Report 2003/2004, Institute for Plant Production, Sub-Programme: Research, Agriculture Western Cape, Elsenburg, South Africa, 2004.
  48. M. B. Hardy, “An investigation into the production of eight crop rotationsystems, including wheat, canola, lupines and pasture species in the Swartland, Western Cape,” Plant Production Yearly Report 2004/2005, Institute for Plant Production, Sub-Programme: Research, Agriculture Western Cape, Elsenburg, South Africa, 2005.
  49. V. Torsvik and L. Øvreås, “Microbial diversity and function in soil: from genes to ecosystems,” Current Opinion in Microbiology, vol. 5, no. 3, pp. 240–245, 2002. View at Publisher · View at Google Scholar · View at Scopus
  50. A. Titus and G. N. Pereira, “The role of actinomycetes in coffee plantation ecology,” 2005, http://www.ineedcoffee.com/05/actinomycetes/.
  51. M. Clarholm, “Protozoan grazing of bacteria in soil—impact and importance,” Microbial Ecology, vol. 7, no. 4, pp. 343–350, 1981. View at Scopus
  52. R. Rønn, A. E. McCaig, B. S. Griffiths, and J. I. Prosser, “Impact of protozoan grazing on bacterial community structure in soil microcosms,” Applied and Environmental Microbiology, vol. 68, no. 12, pp. 6094–6105, 2002. View at Publisher · View at Google Scholar · View at Scopus
  53. A. Bachar, A. Al-Ashhab, M. I. M. Soares et al., “Soil microbial abundance and diversity along a low precipitation gradient,” Microbial Ecology, vol. 60, no. 2, pp. 453–461, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. B. O. Seabi, A. Botha, B. C. Viljoen, and C. Roux, “Nitrogen utilisation and growth at reduced water activity by mucoralean fungi present in soil,” South African Journal of Botany, vol. 65, no. 5-6, pp. 407–413, 1999. View at Scopus
  55. N. Z. Lupwayi, W. A. Rice, and G. W. Clayton, “Soil microbial diversity and community structure under wheat as influenced by tillage and crop rotation,” Soil Biology and Biochemistry, vol. 30, no. 13, pp. 1733–1741, 1998. View at Publisher · View at Google Scholar · View at Scopus
  56. A. Marais, M. I. Ferreira, M. Booyse, and A. Botha, “The effect of the herbicide Roundup, on some populations of soil microbes,” South African Journal of Science and Technology, Artpages, 6 pages, 2011. View at Publisher · View at Google Scholar
  57. N. Fierer, J. P. Schimel, and P. A. Holden, “Influence of drying-rewetting frequency on soil bacterial community structure,” Microbial Ecology, vol. 45, no. 1, pp. 63–71, 2003. View at Publisher · View at Google Scholar · View at Scopus