About this Journal Submit a Manuscript Table of Contents
Applied and Environmental Soil Science
Volume 2012 (2012), Article ID 817158, 11 pages
http://dx.doi.org/10.1155/2012/817158
Research Article

Influence of Stabilized Biosolids Application on Availability of Phosphorus, Copper, and Zinc

Department of Soil Sciences, Faculty of Agriculture, University of Kafrelsheikh, Kafr El-Sheikh 33516, Egypt

Received 6 February 2012; Revised 18 April 2012; Accepted 7 June 2012

Academic Editor: Alejandro Valdecantos

Copyright © 2012 S. M. Shaheen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. P. Singh and M. Agrawal, “Potential benefits and risks of land application of sewage sludge,” Waste Management, vol. 28, no. 2, pp. 347–358, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. C. D. Tsadilas, “Heavy metals forms in biosolids, soils and biosolid—amended soils,” in Dynamics and Bioavailability of Heavy Metals in the Rootzone, H. M. Selim, Ed., pp. 271–291, CRC Press, Taylor and Francis Group, Boca Raton, Fla, USA, 2011.
  3. A. Kabata-Pendias, Trace Elements in Soils and Plants, CRC Press, Boca Raton, Fla, USA, 4th edition, 2011.
  4. D. C. Su and J. W. C. Wong, “Chemical speciation and phytoavailability of Zn, Cu, Ni and Cd in soil amended with fly ash-stabilized sewage sludge,” Environment International, vol. 29, no. 7, pp. 895–900, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. USEPA, 40 CFR Part 503: Standards for the Use or Disposal of Sewage Sludge, U.S. Government Printing Office, Washington, DC, USA, 1997.
  6. R. O. Maguire, G. H. Rubæk, B. E. Haggard, and B. H. Foy, “Critical evaluation of the implementation of mitigation options for phosphorus from field to catchment scales,” Journal of Environmental Quality, vol. 38, no. 5, pp. 1989–1997, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. G. A. O'Connor, D. Sarkar, S. R. Brinton, H. A. Elliott, and F. G. Martin, “Phytoavailability of Biosolids Phosphorus,” Journal of Environmental Quality, vol. 33, no. 2, pp. 703–712, 2004. View at Scopus
  8. S. M. Shaheen, C. D. Tsadilas, and S. Stamatiadis, “Inorganic phosphorus forms in some entisols and aridisols of Egypt,” Geoderma, vol. 142, no. 1-2, pp. 217–225, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. S. M. Shaheen, C. D. Tsadilas, and K. M. Eskridge, “Effect of common ions on phosphorus sorption and lability in Greek alfisols with different pH,” Soil Science, vol. 174, no. 1, pp. 21–26, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. S. M. Shaheen and C. D. Tsadilas, “Phosphorus sorption and availability to canola grown on an Alfisol amended with various soil amendments,” Communication in Soil Science and Plant Analyses. In press.
  11. B. J. Alloway, Heavy Metals in Soils, Blackie Academic & Professional, London, UK, 2nd edition, 1995.
  12. V. Antoniadis, C. D. Tsadilas, and V. Samaras, “Trace element availability in a sewage sludge-amended cotton grown Mediterranean soil,” Chemosphere, vol. 80, no. 11, pp. 1308–1313, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. S. M. Shaheen and C. D. Tsadilas, “Fractionation and bioavailability of trace elements in biosolid amended Alfisol ten years after biosolids application,” in Proceedings of the 11th International Conference of Bio-Geochemistry of Trace Elements, Florence, Italy, Joule 2011.
  14. S. M. Shaheen and C. D. Tsadilas, “Utilization of biosolids in production of bioenergy crops. I: Impact on canola biomass, soil properties and nutrient availability,” Communication in Soil Science and Plant Analyses. In press.
  15. C. D. Tsadilas and S. M. Shaheen, “Utilization of biosolids in production of bioenergy crops. II: impact of application rate on bioavailability and uptake of heavy metals by canola,” Communication in Soil Science and Plant Analyses. In press.
  16. R. A. El-Motaium and M. A. Abo El-Seoud, “Irradiated sewage sludge for production of fennel plants in sandy soil,” Nutrient Cycling in Agroecosystems, vol. 78, no. 2, pp. 133–142, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. Soil Survey Staff, Keys to Soil Taxonomy, USDA-NRCS, Washington, DC, USA, 8th edition, 2010.
  18. G. W. Thomas, “Soil pH and soil acidity,” in Methods of Soil Analysis, Part 3: Chemical Methods, D. L. Sparks, Ed., pp. 491–516, Soil Science Society of America, Madison, Wis, USA, 1996.
  19. A. Walkley, “A critical examination of a rapid method for determining soil organic matter,” Soil Science, vol. 63, pp. 654–661, 1947.
  20. S. R. Olsen, C. V. Cale, F. S. Watanabe, and L. A. Dean, “Estimation of available phosphorus in soil by extraction with sodium bicarbonate,” USDA Circular 939, 1954.
  21. J. Murphy and J. P. Riley, “A modified single solution method for the determination of phosphate in natural waters,” Analytica Chimica Acta, vol. 27, pp. 31–36, 1962. View at Scopus
  22. (USEPA) United States Environmental Protection Agency, “Test methods for evaluating solid wastes,” USEPA SW 846, U.S. Government Printing Office, Washington, DC, USA, 1995.
  23. W. L. Lindsay and W. A. Norvell, “Development DTPA soil test for Zink, iron, nickel, manganese, and copper,” Soil Science Society of America Journal, vol. 42, pp. 421–428, 1978. View at Publisher · View at Google Scholar
  24. G. W. Gee and J. W. Bauder, “Particle size analysis,” in Methods of Soil Analysis: Physical and Mineralogy Methods. Part 1, A. Klute, Ed., pp. 383–412, ASA and SSSA, Madison, Wis, USA, 2nd edition, 1986.
  25. S. M. Shaheen, “Sorption and lability of cadmium and lead in different soils from Egypt and Greece,” Geoderma, vol. 153, no. 1-2, pp. 61–68, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. European Community, “Council directive of 12 June 1986 on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture: directive 86/276/EEC,” Official Journal of the European Communities L, vol. 181, pp. 6–12, 1986.
  27. E. Dœlsch, B. Deroche, and V. Van de Kerchove, “Impact of sewage sludge spreading on heavy metal speciation in tropical soils (Réunion, Indian Ocean),” Chemosphere, vol. 65, no. 2, pp. 286–293, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. D. C. Adriano, A. L. Page, A. A. Elseewi, A. C. Chang, and I. Straughan, “Utilization and disposal of fly ash and other coal residues in terrestrial ecosystems: a review,” Journal of Environmental Quality, vol. 9, no. 3, pp. 333–344, 1980. View at Scopus
  29. D. El-Mogazi, D. J. Lisk, and L. H. Weinstein, “A review of physical, chemical, and biological properties of fly ash and effects on agricultural ecosystems,” Science of the Total Environment, vol. 74, no. 1, pp. 1–37, 1988. View at Scopus
  30. C. Tsadilas, S. M. Shaheen, V. Samaras, D. Gizas, and Z. Hu, “Influence of fly ash application on Copper and Zinc sorption by acidic soil amended with biosolids,” Communications in Soil Science and Plant Analysis, vol. 40, pp. 168–179, 2009.
  31. C. D. Tsadilas, S. M. Shaheen, V. Samaras, S. . Tang, and Z. Hu, “Agricultural use of fly ash and sewage sludge and its impact on soil properties and bioavailability of heavy metals to wheat,” in Proceedings of the 11th International Symposium on Soil and Plant Analysis, Santa Rosa, Calif, USA, July 2009.
  32. S. M. Shaheen and C. D. Tsadilas, “Influence of fly ash and sewage sludge application on cadmium and lead sorption by an acidic Alfisol,” Pedosphere, vol. 20, no. 4, pp. 436–445, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Dutton and J. E. Huijbregts, “Root quality and processing,” in Sugar Beet, A. P. Draycott, Ed., pp. 409–442, Blackwell Publishing, Oxford, UK, 2006.
  34. S. Criquet and A. Braud, “Effects of organic and mineral amendments on available P and phosphatase activities in a degraded Mediterranean soil under short-term incubation experiment,” Soil and Tillage Research, vol. 98, no. 2, pp. 164–174, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. J. W. C. Wong and D. C. Su, “Reutilization of coal fly-ash and sewage sludge as an artificial soil-mix: Effects of preincubation on soil physico-chemical properties,” Bioresource Technology, vol. 59, no. 2-3, pp. 97–102, 1997. View at Publisher · View at Google Scholar · View at Scopus
  36. G. W. Smillie, D. Curtin, and J. K. Syers, “Influence of ex-changeable Ca on phosphate retention in weakly acid soils,” Soil Science Society of America Journal, vol. 51, no. 5, pp. 1169–1172, 1987. View at Scopus
  37. A. L. Sims, C. E. Windels, and C. A. Bradley, “Content and potential availability of selected nutrients in field-applied sugar beet factory lime,” Communications in Soil Science and Plant Analysis, vol. 41, no. 4, pp. 438–453, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. A. R. A. Usman, Y. Kuzyakov, and K. Stahr, “Effect of clay minerals on extractability of heavy metals and sewage sludge mineralization in soil,” Chemistry and Ecology, vol. 20, no. 2, pp. 123–135, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. S. R. Smith, “A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge,” Environment International, vol. 35, no. 1, pp. 142–156, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. L. Kiekens, “Zinc,” in Heavy Metals in Soils, B. J. Alloway, Ed., pp. 284–305, Blackie Academic and Professional, London, UK, 2005.
  41. A. A. Zorpas, V. J. Inglezakis, and M. Loizidou, “Heavy metals fractionation before, during and after composting of sewage sludge with natural zeolite,” Waste Management, vol. 28, no. 11, pp. 2054–2060, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. R. Ciccu, M. Ghiani, A. Serci, S. Fadda, R. Peretti, and A. Zucca, “Heavy metal immobilization in the mining-contaminated soils using various industrial wastes,” Minerals Engineering, vol. 16, no. 3, pp. 187–192, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. C. D. Tsadilas, S. M. Shaheen, V. Samaras, and Z. Hu, “Influence of fly ash and sewage sludge application on the bioavailability and phytoextraction of heavy metals by Triticum Vulgare grown on acidic Alfisols,” in Proceedings of the Cost Action 859-Meeting of Working Group 4, Verneuil-en-Halatte, France, October 2008.
  44. H. Deng, Z. H. Ye, and M. H. Wong, “Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China,” Environmental Pollution, vol. 132, no. 1, pp. 29–40, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. V. K. Mishra and B. D. Tripathi, “Accumulation of chromium and zinc from aqueous solutions using water hyacinth (Eichhornia crassipes),” Journal of Hazardous Materials, vol. 164, no. 2-3, pp. 1059–1063, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. A. R. A. Usman, Y. Kuzyakov, and K. Stahr, “Effect of immobilizing substances and salinity on heavy metals availability to wheat grown on sewage sludge-contaminated soil,” Soil and Sediment Contamination, vol. 14, no. 4, pp. 329–344, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. Z. Hongling, S. Lina, and S. Tieheng, “Solubility of trace elements and heavy metals from stabilized sewage sludge by fly ash,” Bulletin of Environmental Contamination and Toxicology, vol. 83, no. 5, pp. 752–756, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. A. M. Mahdy and E. A. Elkhatib, “Cadmium, copper, nickel, and lead availability in biosolids-amended alkaline soils,” Australian Journal of Basic and Applied Sciences, vol. 1, no. 4, pp. 354–363, 2007.
  49. S. M. Shaheen, C. D. Tsadilas, T. Mitsibonas, and M. Tzouvalekas, “Distribution coefficient of Copper in different soils from Egypt and Greece,” Communications in Soil Science and Plant Analysis, vol. 40, no. 1–6, pp. 214–226, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. L. M. Dudley, J. E. McLean, R. C. Sims, and J. J. Jurinak, “Sorption of copper and cadmium from the water-soluble fraction of an acid mine waste by two calcareous soils,” Soil Science, vol. 145, no. 3, pp. 207–214, 1988. View at Scopus
  51. S. M. Shaheen, Pedo-chemical studies on some Egyptian soils under different depositional environments in relation to their heavy metals content, pollution and remediation [Ph.D. thesis], Faculty of Agriculture, Tanta University, Kafr El-Sheikh, EGYPT, 2005.
  52. S. B. Kanungo, “Leaching behavior of various trace metals in aqueous medium from two fly ash samples,” Journal of Environmental Quality, vol. 29, no. 1, pp. 188–196, 2000. View at Scopus
  53. L. X. Zhou and J. W. C. Wong, “Effect of dissolved organic matter from sludge and sludge compost on soil copper sorption,” Journal of Environmental Quality, vol. 30, no. 3, pp. 878–883, 2001. View at Scopus
  54. G. Murtaza, R. J. Haynes, R. Naidu et al., “Natural attenuation of Zn, Cu, Pb and Cd in three biosolids-amended soils of contrasting pH measured using rhizon pore water samplers,” Water, Air & Soil Pollution, pp. 1–13, 2011. View at Publisher · View at Google Scholar · View at Scopus