About this Journal Submit a Manuscript Table of Contents
Applied and Environmental Soil Science
Volume 2012 (2012), Article ID 826236, 9 pages
http://dx.doi.org/10.1155/2012/826236
Research Article

Evolution of Soil Biochemical Parameters in Rainfed Crops: Effect of Organic and Mineral Fertilization

1E. Ingenieros Agrónomos, Universidad de Castilla-La Mancha (UCLM), Ronda de Calatrava 7, 13071 Ciudad Real, Spain
2CSIC, Centro de Ciencias Medioambientales, Finca Experimental “La Higueruela”, Santa Olalla, 45530 Toledo, Spain
3Servicio de Investigación Agraria, Consejería de Agricultura y Medio Ambiente de la Junta de Comunidades de Castilla-La Mancha, Pintor Matías Moreno 4, 45071 Toledo, Spain

Received 4 December 2011; Accepted 10 April 2012

Academic Editor: Rosario García Moreno

Copyright © 2012 Marta M. Moreno et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Tu, J. B. Ristaino, and S. Hu, “Soil microbial biomass and activity in organic tomato farming systems: effects of organic inputs and straw mulching,” Soil Biology and Biochemistry, vol. 38, no. 2, pp. 247–255, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. A. S. F. Araújo, V. B. Santos, and R. T. R. Monteiro, “Responses of soil microbial biomass and activity for practices of organic and conventional farming systems in Piauí state, Brazil,” European Journal of Soil Biology, vol. 44, no. 2, pp. 225–230, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. M. M. Moreno, C. Lacasta, R. Meco, and C. Moreno, “Rainfed crop energy balance of different farming systems and crop rotations in a semi-arid environment: results of a long-term trial,” Soil and Tillage Research, vol. 114, no. 1, pp. 18–27, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Melero, J. C. R. Porras, J. F. Herencia, and E. Madejon, “Chemical and biochemical properties in a silty loam soil under conventional and organic management,” Soil and Tillage Research, vol. 90, no. 1-2, pp. 162–170, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. C. A. Helander and K. Delin, “Evaluation of farming systems according to valuation indices developed within a European network on integrated and ecological arable farming systems,” European Journal of Agronomy, vol. 21, no. 1, pp. 53–67, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. U. Jørgensen, T. Dalgaard, and E. S. Kristensen, “Biomass energy in organic farming—the potential role of short rotation coppice,” Biomass and Bioenergy, vol. 28, no. 2, pp. 237–248, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. IFOAM Norms, International Federation of Organic Agriculture Movements, 2002.
  8. A. Fließbach and P. Mäder, “Microbial biomass and size-density fractions differ between soils of organic and conventional agricultural systems,” Soil Biology and Biochemistry, vol. 32, no. 6, pp. 757–768, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. J. C. García Gil, Efectos residuales y acumulativos producidos por la aplicación de compost de residuos urbanos y lodos de depuradoras sobre agrosistemas mediterráneos degradados, Ph.D. thesis, Science Faculty, Autonomous University of Madrid, Madrid, Spain, 2001.
  10. D. L. Karlen, M. J. Mausbach, J. W. Doran, R. G. Cline, R. F. Harris, and G. E. Schuman, “Soil quality: a concept, definition, and framework for evaluation,” Soil Science Society of America Journal, vol. 61, no. 1, pp. 4–10, 1997. View at Scopus
  11. J. W. Doran, M. Sarrantonio, and M. A. Liebig, “Soil health and sustainability,” in Advances in Agronomy, D. L. Sparks, Ed., vol. 56, pp. 25–37, Academic Press, San Diego, Calif, USA, 1996.
  12. S. Melero, E. Madejón, J. C. Ruiz, and J. F. Herencia, “Chemical and biochemical properties of a clay soil under dryland agriculture system as affected by organic fertilization,” European Journal of Agronomy, vol. 26, no. 3, pp. 327–334, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. M. R. Carter, E. G. Gregorich, D. W. Anderson, J. W. Doran, H. H. Janzen, and F. J. Pierce, “Chapter 1 Concepts of soil quality and their significance,” Developments in Soil Science, vol. 25, pp. 1–19, 1997. View at Publisher · View at Google Scholar · View at Scopus
  14. E. E. Marriott and M. Wander, “Qualitative and quantitative differences in particulate organic matter fractions in organic and conventional farming systems,” Soil Biology and Biochemistry, vol. 38, no. 7, pp. 1527–1536, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Rotenberg, A. J. Wells, E. J. Chapman, A. E. Whitfield, R. M. Goodman, and L. R. Cooperband, “Soil properties associated with organic matter-mediated suppression of bean root rot in field soil amended with fresh and composted paper mill residuals,” Soil Biology and Biochemistry, vol. 39, no. 11, pp. 2936–2948, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. A. P. Silva, L. C. Babujia, J. C. Franchini, R. A. Souza, and M. Hungria, “Microbial biomass under various soil- and crop-management systems in short- and long-term experiments in Brazil,” Field Crops Research, vol. 119, no. 1, pp. 20–26, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Fernández-Pascual, M. de María, and M. R. de Felipe, “Fijación biológica de nitrógeno: factores limitantes,” in Ciencia y Medio Ambiente, F. Valladares, Ed., pp. 195–202, CSIC, Madrid, Spain, 2002.
  18. USDA, Keys to Soil Taxonomy, Tenth Edition, Soil Survey Staff, United States Department of Agriculture NRCS, 2006.
  19. J. H. Wetters and K. L. Uglum, “Direct spectrophotometric simultaneous determination of nitrite and nitrate in the ultraviolet,” Analytical Chemistry, vol. 42, no. 3, pp. 335–340, 1970. View at Scopus
  20. N. Maire, D. Borcard, E. Laczkó, and W. Matthey, “Organic matter cycling in grassland soils of the Swiss Jura mountains: biodiversity and strategies of the living communities,” Soil Biology and Biochemistry, vol. 31, no. 9, pp. 1281–1293, 1999. View at Publisher · View at Google Scholar · View at Scopus
  21. D. A. Wardle and A. Ghani, “A critique of the microbial metabolic quotient (qCO2) as a bioindicator of disturbance and ecosystem development,” Soil Biology and Biochemistry, vol. 27, no. 12, pp. 1601–1610, 1995. View at Publisher · View at Google Scholar · View at Scopus
  22. T. H. Anderson and K. H. Domsch, “Application of eco-physiological quotients (qCO2 and qD) on microbial biomasses from soils of different cropping histories,” Soil Biology and Biochemistry, vol. 22, no. 2, pp. 251–255, 1990. View at Scopus
  23. E. Madejón, R. López, J. M. Murillo, and F. Cabrera, “Agricultural use of three (sugar-beet) vinasse composts: effect on crops and chemical properties of a Cambisol soil in the Guadalquivir river valley (SW Spain),” Agriculture, Ecosystems and Environment, vol. 84, no. 1, pp. 55–65, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Marinari, G. Masciandaro, B. Ceccanti, and S. Grego, “Evolution of soil organic matter changes using pyrolysis and metabolic indices: a comparison between organic and mineral fertilization,” Bioresource Technology, vol. 98, no. 13, pp. 2495–2502, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. Q. R. Wang, Y. C. Li, and W. Klassen, “Changes of soil microbial biomass carbon and nitrogen with cover crops and irrigation in a tomato field,” Journal of Plant Nutrition, vol. 30, no. 4, pp. 623–639, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. G. Pardo, J. Cavero, J. Aibar, and C. Zaragoza, “Nutrient evolution in soil and cereal yield under different fertilization type in dryland,” Nutrient Cycling in Agroecosystems, vol. 84, no. 3, pp. 267–279, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. P. A. García-Galavís, C. Santamaría, J. C. Ruiz, and A. Daza, “Efecto beneficioso de la agricultura ecológica sobre los microorganismos del suelo,” in Agroecología: Referente Para la Transición de los Sistemas Agrarios, VI SEAE Congress, pp. 1143–1151, Madrid, Spain, 2004.
  28. E. Farrus, M. Adrover, A. Forss, and J. Vadell, “Comparación de tres fuentes de materia orgánica sobre las características del suelo,” in Agroecología: Referente Para la Transición de los Sistemas Agrarios, VI SEAE Congress, pp. 1111–1123, Madrid, Spain, 2004.
  29. Z. Huang, Z. Xu, and C. Chen, “Effect of mulching on labile soil organic matter pools, microbial community functional diversity and nitrogen transformations in two hardwood plantations of subtropical Australia,” Applied Soil Ecology, vol. 40, no. 2, pp. 229–239, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. C. Calabria, I. Bautista, and M. Valero, “Índices biológicos de disponibilidad de nitrógeno en suelos de la Comunidad Valenciana,” in Agroecología: Referente para la Transición de los Sistemas Agrarios, VI SEAE Congress, pp. 1017–1032, Madrid, Spain, 2004.
  31. H. G. Van Faassen and H. Van Dijk, “Manure as a source of nitrogen and phosphorus in soils,” in Animal Manure on Grassland and Fodder Crops, Fertilizer or Waste Development in Plant and Soil Sciences, H. G. van der Meer, R. J. Unwen, T. A. van Dijk, and G. C. Ennik, Eds., pp. 27–45, Martinus Nijhoff Publishers, Dordrecht, The Netherlands, 1987.