About this Journal Submit a Manuscript Table of Contents
Applied and Environmental Soil Science
Volume 2012 (2012), Article ID 838254, 7 pages
http://dx.doi.org/10.1155/2012/838254
Research Article

Modeling Phosphorus Capture by Plants Growing in a Multispecies Riparian Buffer

1College of Natural Resources and Environment, Virginia Tech, 324 Cheatham Hall, Blacksburg, VA 24060, USA
2National Laboratory for Agriculture and the Environment, USDA-Agricultural Research Service, 2110 University Boulevard, Ames, IA 50011, USA

Received 17 February 2012; Accepted 20 May 2012

Academic Editor: Artemi Cerda

Copyright © 2012 J. M. Kelly and J. L. Kovar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. E. Radcliffe, J. Freer, and O. Schoumans, “Diffuse phosphorus models in the United States and Europe: their usages, scales, and uncertainties,” Journal of Environmental Quality, vol. 38, no. 5, pp. 1956–1967, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. L. L. Burkitt, W. J. Dougherty, R. Corkrey, and S. T. Broad, “Modeling the risk of phosphorus runoff following single and split phosphorus fertilizer applications in two contrasting catchments,” Journal of Environmental Quality, vol. 40, no. 2, pp. 548–558, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. C. C. Hoffmann, C. Kjaergaard, J. Uusi-Kämppä, H. C. B. Hansen, and B. Kronvang, “Phosphorus retention in riparian buffers: review of their efficiency,” Journal of Environmental Quality, vol. 38, no. 5, pp. 1942–1955, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. R. P. Udawatta, H. E. Garrett, and R. Kallenbach, “Agroforestry buffers for nonpoint source pollution reductions from agricultural watersheds,” Journal of Environmental Quality, vol. 40, no. 3, pp. 800–806, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. M. D. Tomer, T. B. Moorman, J. L. Kovar, D. E. James, and M. R. Burkart, “Spatial patterns of sediment and phosphorus in a riparian buffer in western Iowa,” Journal of Soil and Water Conservation, vol. 62, no. 5, pp. 329–338, 2007. View at Scopus
  6. E. O. Young and R. D. Briggs, “Phosphorus concentrations in soil and subsurface water: a field study among cropland and riparian buffers,” Journal of Environmental Quality, vol. 37, no. 1, pp. 69–78, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. C. van der Salm, W. J. Chardon, G. F. Koopmans, J. C. van Middelkoop, and P. A. I. Ehlert, “Phytoextraction of phosphorus-enriched grassland soils,” Journal of Environmental Quality, vol. 38, no. 2, pp. 751–761, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. J. M. Kelly, J. L. Kovar, R. Sokolowsky, and T. B. Moorman, “Phosphorus uptake during four years by different vegetative cover types in a riparian buffer,” Nutrient Cycling in Agroecosystems, vol. 78, no. 3, pp. 239–251, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. N. Claassen and B. Steingrobe, “Mechanistic simulation models for a better understanding of nutrient uptake from soil,” in Mineral Nutrition of Crops: Fundamental Mechanisms and Implications, Z. Rengel, Ed., pp. 327–367, Food Products Press, New York, NY, USA, 1999.
  10. P. Hinsinger, A. Brauman, N. Devau et al., “Acquisition of phosphorus and other poorly mobile nutrients by roots. Where do plant nutrition models fail?” Plant and Soil, vol. 348, no. 1-2, pp. 29–61, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. N. Claassen, K. M. Syring, and A. Jungk, “Verification of a mathematical model by simulating potassium uptake from soil,” Plant and Soil, vol. 95, no. 2, pp. 209–220, 1986. View at Publisher · View at Google Scholar · View at Scopus
  12. S. A. Barber and J. H. Cushman, “Nitrogen uptake model for agronomic crops,” in Modeling Wastewater Renovation—Land Treatment, I. K. Iskandar, Ed., pp. 382–409, Wiley-Interscience, New York, NY, USA, 1981.
  13. K. Oats and S. A. Barber, “Nutrient uptake: a minicomputer program to predict nutrient absorption from soil by roots,” Journal of Agronomic Education, vol. 16, pp. 65–68, 1987.
  14. R. D. Hangs, J. D. Knight, and K. C. J. van Rees, “Nitrogen uptake characteristics for roots of conifer seedlings and common boreal forest competitor species,” Canadian Journal of Forest Research, vol. 33, no. 1, pp. 156–163, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. W. Lin and J. M. Kelly, “Nutrient uptake estimates for woody species as described by the NST 3.0, SSAND, and PCATS mechanistic nutrient uptake models,” Plant and Soil, vol. 335, no. 1, pp. 199–212, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. J. L. Kovar and N. Claassen, “Growth and phosphorus uptake of three riparian grass species,” Agronomy Journal, vol. 101, no. 5, pp. 1060–1067, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. J. M. Kelly and T. Ericsson, “Assessing the nutrition of juvenile hybrid poplar using a steady state technique and a mechanistic model,” Forest Ecology and Management, vol. 180, no. 1-3, pp. 249–260, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. O. W. Edwards and E. O. Huffman, “Diffusion of aqueous solutions of phosphoric acid at 25 °,” Journal of Physical Chemistry, vol. 63, no. 11, pp. 1830–1833, 1959. View at Scopus
  19. N. Claassen and S. A. Barber, “A method for characterizing the relation between nutrient concentration and flux into roots of intact plants,” Plant Physiology, vol. 54, no. 4, pp. 564–568, 1974. View at Publisher · View at Google Scholar
  20. J. H. Edwards and S. A. Barber, “Nitrogen uptake characteristics of corn at low N concentration as influenced by plant age,” Agronomy Journal, vol. 68, no. 1, pp. 17–19, 1976. View at Publisher · View at Google Scholar
  21. D. Tennant, “A test of a modified line intercept method of estimating root length,” Journal of Ecology, vol. 63, no. 3, pp. 995–1001, 1975. View at Publisher · View at Google Scholar
  22. A. D. Mackay and S. A. Barber, “Effect of soil moisture and phosphate level on root hair growth of corn roots,” Plant and Soil, vol. 86, no. 3, pp. 321–331, 1985. View at Publisher · View at Google Scholar · View at Scopus
  23. J. L. Kovar and S. A. Barber, “Phosphorus supply characteristics of 33 soils as influenced by seven rates of phosphorus addition,” Soil Science Society of America Journal, vol. 52, no. 1, pp. 160–165, 1988. View at Scopus
  24. L. S. Clesceri, A. S. Greenberg, and R. R. Trussell, Standard Methods for the Examination of Water and Wastewater, American Public Health Association, Washington, DC, USA, 18th edition, 1995.
  25. R. A. Issac and J. D. Kerber, “Atomic absorption and flame photometry techniques and uses in soil, plant, and water analysis,” in Instrumental Methods for Analysis of Soils and Plant Tissue, L. M. Walsh, Ed., pp. 17–37, Soil Science Society of America, Madison, Wis, USA, 1971.
  26. J. M. Kelly, S. A. Barber, and G. S. Edwards, “Modeling magnesium, phosphorus and potassium uptake by loblolly pine seedlings using a Barber-Cushman approach,” Plant and Soil, vol. 139, no. 2, pp. 209–218, 1992. View at Publisher · View at Google Scholar · View at Scopus
  27. J. M. Kelly, A. H. Chappelka, and B. G. Lockaby, “Measured and estimated parameters for a model of nutrient uptake by trees,” New Zealand Journal of Forest Science, vol. 24, pp. 213–225, 1994.
  28. M. Silberbush and S. A. Barber, “Sensitivity of simulated phosphorus uptake to parameters used by a mechanistic-mathematical model,” Plant and Soil, vol. 74, no. 1, pp. 93–100, 1983. View at Publisher · View at Google Scholar · View at Scopus
  29. A. N. Sharpley, B. H. Foy, and P. J. A. Withers, “Practical and innovative measures for the control of agricultural phosphorus losses to water: an overview,” Journal of Environmental Quality, vol. 29, no. 1, pp. 1–9, 2000. View at Scopus
  30. S. A. Barber, Soil Nutrient Bioavailability, John Wiley & Sons, New York, NY, USA, 2nd edition, 1995.
  31. T. Roose, A. C. Fowler, and P. R. Darrah, “A mathematical model of plant nutrient uptake,” Journal of Mathematical Biology, vol. 42, no. 4, pp. 347–360, 2001. View at Scopus
  32. T. Roose and G. J. D. Kirk, “The solution of convection-diffusion equations for solute transport to plant roots,” Plant and Soil, vol. 316, no. 1-2, pp. 257–264, 2009. View at Publisher · View at Google Scholar · View at Scopus