About this Journal Submit a Manuscript Table of Contents
Applied and Environmental Soil Science
Volume 2012 (2012), Article ID 868090, 23 pages
http://dx.doi.org/10.1155/2012/868090
Research Article

Spatially Explicit Estimation of Clay and Organic Carbon Content in Agricultural Soils Using Multi-Annual Imaging Spectroscopy Data

1German Remote Sensing Data Center, German Aerospace Center, Kalkhorstweg 53, 17235 Neustrelitz, Germany
2Remote Sensing Research Group (RSRG), Department of Geography, University of Bonn, Meckenheimer Allee 166, 53115 Bonn, Germany
3Section 1.4 Remote Sensing, GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany

Received 14 February 2012; Revised 5 May 2012; Accepted 26 July 2012

Academic Editor: Jose Alexandre Melo Dematte

Copyright © 2012 Heike Gerighausen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. FAO, World Soil Charter, Food and Agriculture Organization of the United Nations (FAO), 1982.
  2. R. Lal, “Soil carbon sequestration to mitigate climate change,” Geoderma, vol. 123, no. 1-2, pp. 1–22, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Sleutel, S. De Neve, B. Singier, and G. Hofman, “Organic C levels in intensively managed arable soils—long-term regional trends and characterization of fractions,” Soil Use and Management, vol. 22, no. 2, pp. 188–196, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. E. Goidts and B. van Wesemael, “Regional assessment of soil organic carbon changes under agriculture in Southern Belgium (1955–2005),” Geoderma, vol. 141, no. 3-4, pp. 341–354, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Reijneveld, J. van Wensem, and O. Oenema, “Soil organic carbon contents of agricultural land in the Netherlands between 1984 and 2004,” Geoderma, vol. 152, no. 3-4, pp. 231–238, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. R. C. Dalal and R. J. Henry, “Simultaneous determination of moisture, organic carbon, and total nitrogen by near infrared reflectance spectrophotometry,” Soil Science Society of America Journal, vol. 50, no. 1, pp. 120–123, 1986. View at Scopus
  7. E. Ben-Dor and A. Banin, “Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties,” Soil Science Society of America Journal, vol. 59, no. 2, pp. 364–372, 1995. View at Scopus
  8. J. B. Reeves, G. W. McCarty, and J. J. Meisinger, “Near infrared reflectance spectroscopy for the analysis of agricultural soils,” Journal of Near Infrared Spectroscopy, vol. 7, no. 3, pp. 179–193, 1999. View at Scopus
  9. K. D. Shepherd and M. G. Walsh, “Development of reflectance spectral libraries for characterization of soil properties,” Soil Science Society of America Journal, vol. 66, no. 3, pp. 988–998, 2002. View at Scopus
  10. D. J. Brown, K. D. Shepherd, M. G. Walsh, M. Dewayne Mays, and T. G. Reinsch, “Global soil characterization with VNIR diffuse reflectance spectroscopy,” Geoderma, vol. 132, no. 3-4, pp. 273–290, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. R. A. Viscarra Rossel, D. J. J. Walvoort, A. B. McBratney, L. J. Janik, and J. O. Skjemstad, “Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties,” Geoderma, vol. 131, no. 1-2, pp. 59–75, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. G. R. Hunt and J. W. Salisbury, “Visible and near-infrared spectra of minerals and rocks. I. Silicate minerals,” Modern Geology, vol. 1, pp. 283–300, 1970.
  13. R. N. Clark, T. V. V. King, M. Klejwa, G. A. Swayze, and N. Vergo, “High spectral resolution reflectance spectroscopy of minerals,” Journal of Geophysical Research, vol. 95, no. 8, pp. 12–680, 1990. View at Scopus
  14. E. Ben-Dor, J. R. Irons, and G. Epema, “Soil reflectance,” in Remote Sensing for the Earth Sciences: Manual of Remote Sensing, A. N. Rencz, Ed., vol. 3, chapter 3, pp. 111–188, John Wiley & Sons, New York, NY, USA, 3rd edition, 1999.
  15. A. Palacios-Orueta and S. L. Ustin, “Remote sensing of soil properties in the Santa Monica Mountains I. Spectral analysis,” Remote Sensing of Environment, vol. 65, no. 2, pp. 170–183, 1998. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Krüger, J. Erzinger, and H. Kaufmann, “Laboratory and airborne reflectance spectroscopic analyses of lignite overburden dumps,” Journal of Geochemical Exploration, vol. 64, no. 1–3, pp. 47–65, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Chabrillat, A. F. H. Goetz, L. Krosley, and H. W. Olsen, “Use of hyperspectral images in the identification and mapping of expansive clay soils and the role of spatial resolution,” Remote Sensing of Environment, vol. 82, no. 2-3, pp. 431–445, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. E. Ben-Dor, K. Patkin, A. Banin, and A. Karnieli, “Mapping of several soil properties using DAIS-7915 hyperspectral scanner data—a case study over soils in Israel,” International Journal of Remote Sensing, vol. 23, no. 6, pp. 1043–1062, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. T. Selige, J. Böhner, and U. Schmidhalter, “High resolution topsoil mapping using hyperspectral image and field data in multivariate regression modeling procedures,” Geoderma, vol. 136, no. 1-2, pp. 235–244, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Stevens, T. Udelhoven, A. Denis et al., “Measuring soil organic carbon in croplands at regional scale using airborne imaging spectroscopy,” Geoderma, vol. 158, no. 1-2, pp. 32–45, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Gomez, R. A. Viscarra Rossel, and A. B. McBratney, “Soil organic carbon prediction by hyperspectral remote sensing and field vis-NIR spectroscopy: an Australian case study,” Geoderma, vol. 146, no. 3-4, pp. 403–411, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. P. Lagacherie, F. Baret, J. B. Feret, J. Madeira Netto, and J. M. Robbez-Masson, “Estimation of soil clay and calcium carbonate using laboratory, field and airborne hyperspectral measurements,” Remote Sensing of Environment, vol. 112, no. 3, pp. 825–835, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Stevens, B. Van Wesemael, G. Vandenschrick, S. Touré, and B. Tychon, “Detection of carbon stock change in agricultural soils using spectroscopic techniques,” Soil Science Society of America Journal, vol. 70, no. 3, pp. 844–850, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. B. S. Siegal and A. F. H. Goetz, “Effects of vegetation on rock and soil type discrimination,” Photogrammetric Engineering and Remote Sensing, vol. 43, no. 2, pp. 191–196, 1977. View at Scopus
  25. L. Kooistra, J. Wanders, G. F. Epema, R. S. E. W. Leuven, R. Wehrens, and L. M. C. Buydens, “The potential of field spectroscopy for the assessment of sediment properties in river floodplains,” Analytica Chimica Acta, vol. 484, no. 2, pp. 189–200, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. R. J. Murphy and G. Wadge, “The effects of vegetation on the ability to map soils using imaging spectrometer data,” International Journal of Remote Sensing, vol. 15, no. 1, pp. 63–86, 1994. View at Scopus
  27. R. J. Murphy, “The effects of surficial vegetation cover on mineral absorption feature parameters,” International Journal of Remote Sensing, vol. 16, no. 12, pp. 2153–2164, 1995. View at Scopus
  28. H. Bartholomeus, L. Kooistra, A. Stevens et al., “Soil Organic Carbon mapping of partially vegetated agricultural fields with imaging spectroscopy,” International Journal of Applied Earth Observation and Geoinformation, vol. 13, no. 1, pp. 81–88, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. W. Ouerghemmi, C. Gomez, S. Naceur, and P. Lagacherie, “Applying blind source separation on hyperspectral data for clay content estimation over partially vegetated surfaces,” Geoderma, vol. 163, no. 3-4, pp. 227–237, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. H. Bartholomeus, G. Epema, and M. Schaepman, “Determining iron content in Mediterranean soils in partly vegetated areas, using spectral reflectance and imaging spectroscopy,” International Journal of Applied Earth Observation and Geoinformation, vol. 9, no. 2, pp. 194–203, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Rodger and T. Cudahy, “Vegetation corrected continuum depths at 2.20 μm: an approach for hyperspectral sensors,” Remote Sensing of Environment, vol. 113, no. 10, pp. 2243–2257, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. C. Gomez, P. Lagacherie, and G. Coulouma, “Continuum removal versus PLSR method for clay and calcium carbonate content estimation from laboratory and airborne hyperspectral measurements,” Geoderma, vol. 148, no. 2, pp. 141–148, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. L. Kooistra, R. S. E. W. Leuven, R. Wehrens, P. H. Nienhuis, and L. M. C. Buydens, “A comparison of methods to relate grass reflectance to soil metal contamination,” International Journal of Remote Sensing, vol. 24, no. 24, pp. 4995–5010, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Stevens, B. van Wesemael, H. Bartholomeus, D. Rosillon, B. Tychon, and E. Ben-Dor, “Laboratory, field and airborne spectroscopy for monitoring organic carbon content in agricultural soils,” Geoderma, vol. 144, no. 1-2, pp. 395–404, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. G. B. M. Heuvelink and R. Webster, “Modelling soil variation: past, present, and future,” Geoderma, vol. 100, no. 3-4, pp. 269–301, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. P. Leinweber, H. R. Schulten, and M. Körschens, “Seasonal variations of soil organic matter in a long-term agricultural experiment,” Plant and Soil, vol. 160, no. 2, pp. 225–235, 1994. View at Scopus
  37. S. E. Trumbore, O. A. Chadwick, and R. Amundson, “Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change,” Science, vol. 272, no. 5260, pp. 393–396, 1996. View at Scopus
  38. Y. Wang, R. Amundson, and X. F. Niu, “Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurements of soil CO2 flux,” Global Biogeochemical Cycles, vol. 14, no. 1, pp. 199–211, 2000. View at Scopus
  39. J. Rogasik, E. Schnug, and H. Rogasik, “Landbau und treibhauseffekt—quellen und senken für CO2 bei unterschiedlicher Landbewirtschaftung,” Archives of Agronomy and Soil Science, vol. 45, no. 2, pp. 105–121, 2000.
  40. F. Ellmer and M. Baumecker, “Static nutrient depletion experiment Thyrow. Results after 65 experimental years,” Archives of Agronomy and Soil Science, vol. 51, no. 2, pp. 151–161, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. L. S. Jensen, T. Mueller, N. E. Nielsen et al., “Simulating trends in soil organic carbon in long-term experiments using the soil-plant-atmosphere model DAISY,” Geoderma, vol. 81, no. 1-2, pp. 5–28, 1997. View at Publisher · View at Google Scholar · View at Scopus
  42. T. Dann and U. Ratzke, “Böden,” in Geologie von Mecklenburg-Vorpommern. Kap. 6. 12, E. Schweizerbart’Sche Verlagsbuchhandlung, G. Katzung, Ed., pp. 489–508, Nägele u. Obermiller, Stuttgart, Germany, 2004.
  43. DWD, “DWD—Deutscher Wetterdienst, Deutscher Klimaatlas,” 2012, http://www.dwd.de/klimaatlas.
  44. D. F. Malley, P. D. Martin, and E. Ben-Dor, “Application in analysis of soils,” in Near-Infrared Spectroscopy in Agriculture, C. A. Roberts, J. Workman Jr., and J. B. Reeves III, Eds., pp. 729–784, American Society of Agronomy, Madison, Wis, USA, 2004.
  45. J. L. Lozán and H. Kausch, Angewandte Statistik für Naturwissenschaftler. 3. Überarbeitete und ergänzte Auflg., Wissenschaftliche Auswertungen, Hamburg, Germany, 2004.
  46. A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data by simplified least squares procedures,” Analytical Chemistry, vol. 36, no. 8, pp. 1627–1639, 1964. View at Scopus
  47. Exelis VIS, Exelis Visual Information Solutions, 2011.
  48. R. Richter, “Atmospheric/ topographic correction for airborne imagery,” 2008, ATCOR-4 User Guide, Version 4. 3.
  49. R. Richter and D. Schläpfer, “Geo-atmospheric processing of airborne imaging spectrometry data—part 2: atmospheric/topographic correction,” International Journal of Remote Sensing, vol. 23, no. 13, pp. 2631–2649, 2002. View at Publisher · View at Google Scholar · View at Scopus
  50. R. Müller, M. Lehner, P. Reinartz, and M. Schroeder, “Evaluation of spaceborne and airborne line scanner images using a generic ortho image processor,” in High Resolution Earth Imaging for Geospatial Information, C. Heipke, K. Jacobsen, and M. Gerke, Eds., vol. 36 of International Archives of Photogrammetry and Remote Sensing, pp. 17–20, High Resolution Earth Imaging for Geospatial Information, Hannover, Germany, 2005.
  51. K. Islam, B. Singh, and A. McBratney, “Simultaneous estimation of several soil properties by ultra-violet, visible, and near-infrared reflectance spectroscopy,” Australian Journal of Soil Research, vol. 41, no. 6, pp. 1101–1114, 2003. View at Publisher · View at Google Scholar · View at Scopus
  52. P. H. Fidêncio, R. J. Poppi, and J. C. De Andrade, “Determination of organic matter in soils using radial basis function networks and near infrared spectroscopy,” Analytica Chimica Acta, vol. 453, no. 1, pp. 125–134, 2002. View at Publisher · View at Google Scholar · View at Scopus
  53. M. Cohen, R. S. Mylavarapu, I. Bogrekci, W. S. Lee, and M. W. Clark, “Reflectance spectroscopy for routine agronomic soil analyses,” Soil Science, vol. 172, no. 6, pp. 469–485, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. R. A. Viscarra Rossel, “ParLeS: software for chemometric analysis of spectroscopic data,” Chemometrics and Intelligent Laboratory Systems, vol. 90, no. 1, pp. 72–83, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. H. Martens and T. Næs, Multivariate Calibration, John Wiley & Sons, Guildford, UK, 1989.
  56. C. W. Chang, D. A. Laird, M. J. Mausbach, and C. R. Hurburgh, “Near-infrared reflectance spectroscopy—principal components regression analyses of soil properties,” Soil Science Society of America Journal, vol. 65, no. 2, pp. 480–490, 2001. View at Scopus
  57. LUNG, Landesamt für Umwelt, and Naturschutz und Geologie Mecklenburg Vorpommern, Beiträge Zum Bodenschutz in Mecklenburg-Vorpommern, Böden in Mecklenburg-Vorpommern, Güstrow, Germany, 2003.
  58. O. Düwel and J. Utermann, “Humusversorgung der (Ober-)Böden in Deutschland—status quo,” in Humusversorgung von Böden in Deutschland, R. F. Hüttl, A. Prechtel, and O. Bens, Eds., Publikationen des Umweltbundesamtes, Abschnitt II, Kap. 8.1, 2008.
  59. D. B. Lobell and G. P. Asner, “Moisture effects on soil reflectance,” Soil Science Society of America Journal, vol. 66, no. 3, pp. 722–727, 2002. View at Scopus
  60. C. S. T. Daughtry, E. R. Hunt, C. L. Walthall, T. J. Gish, S. Liang, and E. J. Kramer, “Assessing the spatial distribution of plant litter,” in Proceedings of the 10th AVIRIS Earth Science and Applications Workshop, pp. 105–114, NASA, Jet Propulsion, Pasadena, Calif, USA, March 2001.
  61. P. L. Nagler, C. S. T. Daughtry, and S. N. Goward, “Plant litter and soil reflectance,” Remote Sensing of Environment, vol. 71, no. 2, pp. 207–215, 2000. View at Publisher · View at Google Scholar · View at Scopus
  62. P. L. Nagler, Y. Inoue, E. P. Glenn, A. L. Russ, and C. S. T. Daughtry, “Cellulose absorption index (CAI) to quantify mixed soil-plant litter scenes,” Remote Sensing of Environment, vol. 87, no. 2-3, pp. 310–325, 2003. View at Publisher · View at Google Scholar · View at Scopus
  63. D. J. Brus, B. Kempen, and G. B. M. Heuvelink, “Sampling for validation of digital soil maps,” European Journal of Soil Science, vol. 62, no. 3, pp. 394–407, 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. T. H. Waiser, C. L. S. Morgan, D. J. Brown, and C. T. Hallmark, “In situ characterization of soil clay content with visible near-infrared diffuse reflectance spectroscopy,” Soil Science Society of America Journal, vol. 71, no. 2, pp. 389–396, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. D. Cozzolino and A. Morón, “The potential of near-infrared reflectance spectroscopy to analyse soil chemical and physical characteristics,” Journal of Agricultural Science, vol. 140, no. 1, pp. 65–71, 2003. View at Publisher · View at Google Scholar · View at Scopus
  66. A. Volkan Bilgili, H. M. van Es, F. Akbas, A. Durak, and W. D. Hively, “Visible-near infrared reflectance spectroscopy for assessment of soil properties in a semi-arid area of Turkey,” Journal of Arid Environments, vol. 74, no. 2, pp. 229–238, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. S. Wold, M. Sjöström, and L. Eriksson, “PLS-regression: a basic tool of chemometrics,” Chemometrics and Intelligent Laboratory Systems, vol. 58, no. 2, pp. 109–130, 2001. View at Publisher · View at Google Scholar · View at Scopus
  68. E. Ben-Dor, Y. Inbar, and Y. Chen, “The reflectance spectra of organic matter in the visible near-infrared and short wave infrared region (400–2500 nm) during a controlled decomposition process,” Remote Sensing of Environment, vol. 61, no. 1, pp. 1–15, 1997. View at Publisher · View at Google Scholar · View at Scopus
  69. J. Workman Jr. and L. Weyer, Practical Guide to Interpretive Near-Infrared Spectroscopy, CRC Press, Taylor & Francis Group, Boca Raton, Fla, USA, 2008.
  70. C. W. Chang and D. A. Laird, “Near-infrared reflectance spectroscopic analysis of soil C and N,” Soil Science, vol. 167, no. 2, pp. 110–116, 2002. View at Publisher · View at Google Scholar · View at Scopus
  71. T. Udelhoven, C. Emmerling, and T. Jarmer, “Quantitative analysis of soil chemical properties with diffuse reflectance spectrometry and partial least-square regression: a feasibility study,” Plant and Soil, vol. 251, no. 2, pp. 319–329, 2003. View at Publisher · View at Google Scholar · View at Scopus
  72. M. von Schönermark, B. Geiger, and H. Röser, Eds., Reflection Properties of Vegetation and Soil with a BRDF data base, Wissenschaft und Technik, Berlin, Germany, 2004.
  73. H. Kaufmann, L. Guanter, K. Segl et al., “EnMAP—an advanced optical payload for earth observation,” in Proceedings of ASD and IEEE GRS Art, Science and Applications of Reflectance Spectroscopy Symposium, Boulder, Colo, USA, 2010.