About this Journal Submit a Manuscript Table of Contents
Applied and Environmental Soil Science
Volume 2013 (2013), Article ID 283468, 10 pages
http://dx.doi.org/10.1155/2013/283468
Review Article

Managing the Selenium Content in Soils in Semiarid Environments through the Recycling of Organic Matter

1Faculty of Sciences, University of La Coruña, Zapateira, 15001 A Coruña, Spain
2Judith and David Coffey Chair, Faculty of Agriculture, Food and Natural Resources, University of Sydney, Suite 411 Biomedical Building, 1 Central Avenue, Australian Technology Park, Eveleigh, Sydney, NSW 2015, Australia
3CEIGRAM (Centre for Studies and Research on Agricultural and Environmental Risk Management), School of Agricultural Engineering, Polytechnic University of Madrid, Ciudad Universitaria S/N, 28040 Madrid, Spain

Received 29 June 2013; Revised 2 September 2013; Accepted 14 October 2013

Academic Editor: Philip J. White

Copyright © 2013 R. Garcia Moreno et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Around 30% of the world’s population suffers from either a lack of one or more essential micronutrients, or the overconsumption of these minerals, which causes toxicity. Selenium (Se) is a particularly important micronutrient component of the diet with a well-documented and wide-ranging role in maintaining health. However, this important micronutrient can be lacking because soil and crop management are focused on high yields to the detriment of the quality of crops required to ensure a healthy human diet. Currently around 15% of the global population has selenium deficiency. This paper focuses on Se availability in semiarid soils and how micronutrients can be effectively managed through the recycling of organic matter. Because many mineral reserves are being exploited unsustainably, we review the advantages of using organic by-products for the management of the biofortification of Se in crops. This type of practice is particularly useful in arid and semiarid environments because organic matter acts as a reservoir for Se, preventing bioaccumulation and leaching. There are also potential local economic benefits from using organic by-products, such as manures and sewage sludge.