About this Journal Submit a Manuscript Table of Contents
Applied and Environmental Soil Science
Volume 2013 (2013), Article ID 283468, 10 pages
http://dx.doi.org/10.1155/2013/283468
Review Article

Managing the Selenium Content in Soils in Semiarid Environments through the Recycling of Organic Matter

1Faculty of Sciences, University of La Coruña, Zapateira, 15001 A Coruña, Spain
2Judith and David Coffey Chair, Faculty of Agriculture, Food and Natural Resources, University of Sydney, Suite 411 Biomedical Building, 1 Central Avenue, Australian Technology Park, Eveleigh, Sydney, NSW 2015, Australia
3CEIGRAM (Centre for Studies and Research on Agricultural and Environmental Risk Management), School of Agricultural Engineering, Polytechnic University of Madrid, Ciudad Universitaria S/N, 28040 Madrid, Spain

Received 29 June 2013; Revised 2 September 2013; Accepted 14 October 2013

Academic Editor: Philip J. White

Copyright © 2013 R. Garcia Moreno et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. J. White and M. R. Broadley, “Biofortification of crops with seven mineral elements often lacking in human diets—iron, zinc, copper, calcium, magnesium, selenium and iodine,” New Phytologist, vol. 182, no. 1, pp. 49–84, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. J. L. Stroud, M. R. Broadley, I. Foot et al., “Soil factors affecting selenium concentration in wheat grain and the fate and speciation of Se fertilisers applied to soil,” Plant and Soil, vol. 332, no. 1, pp. 19–30, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. D. Tennant, G. Scholz, J. Dixon, and B. Purdie, “Physical and chemical characteristics of duplex soils and their distribution in the south-west of Western Australia,” Australian Journal of Experimental Agriculture, vol. 32, no. 7, pp. 827–843, 1992. View at Scopus
  4. U. C. Gupta, W. Kening, and L. Siyuan, “Micronutrients in soils, crops and livestock,” Earth Science Frontiers, vol. 15, no. 5, pp. 110–125, 2008. View at Publisher · View at Google Scholar
  5. G. Gissel-Nielsen, “Effects of selenium supplementation of field crops,” in Environmental Chemistry of Selenium, W. T. Frankenberger and R. A. Engberg, Eds., pp. 99–112, Dekker, New York, NY, USA, 1998.
  6. P. Ekholm, H. Reinivuo, P. Mattila et al., “Changes in the mineral and trace element contents of cereals, fruits and vegetables in Finland,” Journal of Food Composition and Analysis, vol. 20, no. 6, pp. 487–495, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Mythili, K. Natarajan, and R. Kalpana, “Zinc nutrition in rice: a review,” Agricultural Reviews, vol. 24, no. 2, pp. 136–141, 2003.
  8. G. Bañuelos and Z. Q. Lin, Development and Uses of Biofortified Agricultural Products, CRC Press, Boca Raton, Fla, USA, 2009.
  9. B. H. Robinson, G. Bañuelos, H. M. Conesa, M. W. H. Evangelou, and R. Schulin, “The phytomanagement of trace elements in soil,” Critical Reviews in Plant Sciences, vol. 28, no. 4, pp. 240–266, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Hueso, T. Hernández, and C. García, “Resistance and resilience of the soil microbial biomass to severe drought in semiarid soils: the importance of organic amendments,” Applied Soil Ecology, vol. 50, no. 1, pp. 27–36, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. P. M. Haygarth, “Global importance and global cycling of selenium,” in Selenium in the Environment, W. T. Frankenberger and B. Sally, Eds., pp. 1–28, Marcel Dekker, New York, NY, USA, 1994.
  12. M. P. Rayman, “The argument for increasing selenium intake,” Proceedings of the Nutrition Society, vol. 61, no. 2, pp. 203–215, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. M. F. Fenech, “Dietary reference values of individual micronutrients and nutriomes for genome damage prevention: current status and a road map to the future,” American Journal of Clinical Nutrition, vol. 91, no. 5, pp. 1438S–1454S, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. G. W. Ford, J. J. Martin, P. Rengasamy, S. C. Boucher, and A. Ellington, “Soil sodicity in Victoria,” Australian Journal of Soil Research, vol. 31, no. 6, pp. 869–909, 1993. View at Publisher · View at Google Scholar · View at Scopus
  15. M. R. Broadley, P. J. White, R. J. Bryson et al., “Biofortification of UK food crops with selenium,” Proceedings of the Nutrition Society, vol. 65, no. 2, pp. 169–181, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. F. Fordice, “Selenium deficiency and toxicity in the environment,” in Essentials of Medical Geology, O. Selinus, B. Alloway, J. Centeno et al., Eds., pp. 373–415, Elsevier, London, UK, 2005.
  17. D. V. Frost, “What do losses in selenium and arsenic bioavailability signify for health?” Science of the Total Environment, vol. 28, pp. 455–466, 1983. View at Scopus
  18. National Academy of Sciences, Recommended Dietary Allowances, National Academy of Sciences, Washington, DC, USA, 10th edition, 1989.
  19. J. Lee, D. G. Masters, C. L. White, N. D. Grace, and G. J. Judson, “Current issues in trace element nutrition of grazing livestock in Australia and New Zealand,” Australian Journal of Agricultural Research, vol. 50, no. 8, pp. 1341–1364, 1999. View at Publisher · View at Google Scholar · View at Scopus
  20. A. D. Lemly, “Guidelines for evaluating selenium data from aquatic monitoring and assessment studies,” Environmental Monitoring and Assessment, vol. 28, no. 1, pp. 83–100, 1993. View at Publisher · View at Google Scholar · View at Scopus
  21. O. A. Levander and R. F. Burk, “Uptake of human dietary standards for selenium,” in Selenium Its Molecular Biology and Role in Human Health, D. L. Hatfield, M. J. Berry, and V. N. Gladyshev, Eds., pp. 399–410, Springer, New York, NY, USA, 2nd edition, 2006.
  22. G. Lyons, “Selenium in cereals: improving the efficiency of agronomic biofortification in the UK,” Plant and Soil, vol. 332, no. 1, pp. 1–4, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Wu, C. Salisbury, R. Graham, G. Lyons, and M. Fenech, “Increased consumption of wheat biofortified with selenium does not modify biomarkers of cancer risk, oxidative stress, or immune function in healthy Australian males,” Environmental and Molecular Mutagenesis, vol. 50, no. 6, pp. 489–501, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Schwarz and C. M. Foltz, “Selenium as an integral part of factor 3 against dietary necrotic liver degeneration,” Journal of the American Chemical Society, vol. 79, no. 12, pp. 3292–3293, 1957. View at Scopus
  25. K. Kaur, R. K. Jalota, and D. J. Midmore, “Impact of tree clearing on soil attributes for a pastoral property in central Queensland, Australia,” Soil Science, vol. 172, no. 7, pp. 516–533, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. K. M. Havstad, J. E. Herrick, and W. H. Schlesinger, “Desert rangelends, degradation and nutrients,” in Rangeland Desertification, O. Arnalds and S. Archer, Eds., pp. 77–87, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2000.
  27. E. A. Pilon-Smits, C. F. Quinn, W. Tapken, M. Malagoli, and M. Schiavon, “Physiological functions of beneficial elements,” Current Opinion in Plant Biology, vol. 12, no. 3, pp. 267–274, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. C. D. Thomson, “Assessment of requirements for selenium and adequacy of selenium status: a review,” European Journal of Clinical Nutrition, vol. 58, no. 3, pp. 391–402, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. M. P. Rayman, “Food-chain selenium and human health: emphasis on intake,” British Journal of Nutrition, vol. 100, no. 2, pp. 254–268, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. G. J. Judson and D. J. Reuter, Soil Analysis: An Interpretation Manual, South Australia Research & Development Institute (SARDI), Urrbrae, South Australia, 1998.
  31. G. H. Lyons, J. C. R. Stangoulis, and R. D. Graham, “Tolerance of wheat (Triticum aestivum L.) to high soil and solution selenium levels,” Plant and Soil, vol. 270, no. 1, pp. 179–188, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. J. D. Rosen, “A Review of the nutrition claims made by proponents of organic food,” Comprehensive Reviews in Food Science and Food Safety, vol. 9, no. 3, pp. 270–277, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. K. Nakamuro, K. Nakanishi, T. Okuno, T. Hasegawa, and Y. Sayato, “Comparison of methylated selenium metabolites in rats after oral administration of various selenium compounds,” Japanese Journal of Toxicology and Environmental Health, vol. 43, no. 1, pp. 1482–1489, 1997. View at Scopus
  34. T. Hasegawa, M. Mihara, K. Nakamuro, and Y. Sayato, “Mechanisms of selenium methylation and toxicity in mice treated with selenocystine,” Archives of Toxicology, vol. 71, no. 1-2, pp. 31–38, 1996. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. G. Zhu, E. A. H. Pilon-Smits, F. J. Zhao, P. N. Williams, and A. A. Meharg, “Selenium in higher plants: understanding mechanisms for biofortification and phytoremediation,” Trends in Plant Science, vol. 14, no. 8, pp. 436–442, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. G. Lyons, I. Ortiz-Monasterio, J. Stangoulis, and R. Graham, “Selenium concentration in wheat grain: is there sufficient genotypic variation to use in breeding?” Plant and Soil, vol. 269, no. 1-2, pp. 369–380, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. M. H. Eurola, P. I. Ekholm, M. E. Ylinen, P. E. Koivistoinen, and P. T. Varo, “Selenium in finish foods after beginning the use of selenate-supplemented fertilisers,” Journal of the Science of Food and Agriculture, vol. 56, pp. 57–70, 1991. View at Publisher · View at Google Scholar
  38. M. R. Broadley, J. Alcock, J. Alford et al., “Selenium biofortification of high-yielding winter wheat (Triticum aestivum L.) by liquid or granular Se fertilisation,” Plant and Soil, vol. 332, no. 1, pp. 5–18, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Eurola, V. Hietaniemi, M. Kontturi et al., “Selenium content of Finnish oats in 1997–1999: effect of cultivars and cultivation techniques,” Agricultural and Food Science, vol. 13, no. 1-2, pp. 46–53, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. I. Bertrand, R. E. Holloway, R. D. Armstrong, and M. J. McLaughlin, “Chemical characteristics of phosphorus in alkaline soils from southern Australia,” Australian Journal of Soil Research, vol. 41, no. 1, pp. 61–76, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. M. A. Bowker, J. Belnap, D. W. Davidson, and S. L. Phillips, “Evidence for micronutrient limitation of biological soil crusts: importance to arid-lands restoration,” Ecological Applications, vol. 15, no. 6, pp. 1941–1951, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. H. Hartikainen, “Biogeochemistry of selenium and its impact on food chain quality and human health,” Journal of Trace Elements in Medicine and Biology, vol. 18, no. 4, pp. 309–318, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. A. D. Robson, N. E. Longnecker, and L. D. Osborne, “Effects of heterogeneous nutrient supply on root growth and nutrient uptake in relation to nutrient supply on duplex soils,” Australian Journal of Experimental Agriculture, vol. 32, no. 7, pp. 879–886. View at Publisher · View at Google Scholar
  44. W. H. Schlesinger, J. F. Reynolds, G. L. Cunningham et al., “Biological feedbacks in global desertification,” Science, vol. 247, no. 4946, pp. 1043–1048, 1990. View at Scopus
  45. Z. Rengel, G. D. Batten, and D. E. Crowley, “Agronomic approaches for improving the micronutrient density in edible portions of field crops,” Field Crops Research, vol. 60, no. 1-2, pp. 27–40, 1999. View at Publisher · View at Google Scholar · View at Scopus
  46. H. F. Li, S. P. McGrath, and F. J. Zhao, “Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite,” New Phytologist, vol. 178, no. 1, pp. 92–102, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. P. Pathak, K. L. Sahrawat, S. P. Wani, R. C. Sachan, and R. Sudi, “Opportunities for water harvesting and supplemental irrigation for improving rainfed agriculture in semi-arid areas,” in Rainfed Agriculture: Unlocking the Potential. Comprehensive Assessment of Water in Agriculture Series, S. P. Wani, J. Rockström, and T. Oweis, Eds., vol. 7, pp. 197–221, CAB International, Wallingford, UK, 2009.
  48. A. Bationo, J. Kihara, V. Vanlauwe, J. Kimetu, B. S. Waswa, and K. L. Sahrawat, “Integrated nutrient managemenr: concepts and experience form Sub-Saharan Africa,” in Integrated Nutrient Management for Sustainable Crop Production, M. S. Auklakh and C. A. Grant, Eds., pp. 467–521, The Haworth Press-Taylor and Francis, New York, NY, USA, 2008.
  49. A. D. Sparrow, M. H. Friedel, and D. J. Tongway, “Degradation and recovery processes in arid grazing lands of central Australia. Part 3: implications at landscape scale,” Journal of Arid Environments, vol. 55, no. 2, pp. 349–360, 2003. View at Publisher · View at Google Scholar · View at Scopus
  50. N. E. Spencer and S. M. Siegel, “Effects of sulfur and selenium oxyanions on Hg-toxicity in turnip seed germination,” Water, Air, and Soil Pollution, vol. 9, no. 4, pp. 423–427, 1978. View at Scopus
  51. S. H. Van Dorst and P. J. Peterson, “Selenium speciation in the soil solution and its relevance to plant uptake,” Journal of the Science of Food and Agriculture, vol. 35, pp. 601–605, 1984.
  52. V. V. Kuznetsov, V. P. Kholodova, V. V. Kuznetsov, and B. A. Yagodin, “Selenium regulates the water status of plants exposed to drought,” Dokaldy Biological Sciences, vol. 390, no. 1–6, pp. 266–268, 2003. View at Publisher · View at Google Scholar · View at Scopus
  53. M. A. Elrashidi, D. C. Adriano, and W. L. Lindsay, “Solubility, speciation and transformations of selenium in soils,” in Selenium in Agriculture and the Environment, L. W. Jacobs, Ed., Special Publication Number 23, pp. 51–63, SSSA, Madison, Wis, USA, 1989.
  54. M. S. Fan, F. J. Zhao, P. R. Poulton, and S. P. McGrath, “Historical changes in the concentrations of selenium in soil and wheat grain from the Broadbalk experiment over the last 160 years,” Science of the Total Environment, vol. 389, no. 2-3, pp. 532–538, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. R. K. Bastian, “Interpreting science in the real world for sustainable land application,” Journal of Environmental Quality, vol. 34, no. 1, pp. 174–183, 2005. View at Scopus
  56. A. Fernández-Martínez and L. Charlet, “Selenium environmental cycling and bioavailability: a structural chemist point of view,” Reviews in Environmental Science and Biotechnology, vol. 8, no. 1, pp. 81–110, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. J. H. Park, D. Lamb, P. Paneerselvam, G. Choppala, N. Bolan, and J. W. Chung, “Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils,” Journal of Hazardous Materials, vol. 185, no. 2-3, pp. 549–574, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. A. F. Øgaard, T. A. Sogn, and S. Eich-Greatorex, “Effect of cattle manure on selenate and selenite retention in soil,” Nutrient Cycling in Agroecosystems, vol. 76, no. 1, pp. 39–48, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. M. P. Rayman, H. G. Infante, and M. Sargent, “Food-chain selenium and human health: spotlight on speciation,” British Journal of Nutrition, vol. 100, no. 2, pp. 238–253, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. W. T. Frankenberger Jr. and U. Karlson, “Soil management factors affecting volatilization of selenium from dewatered sediments,” Geomicrobiology Journal, vol. 12, no. 4, pp. 265–278, 1994. View at Scopus
  61. W. T. Frankenberger Jr. and U. Karlson, “Volatilization of selenium from a dewatered seleniferous sediment: a field study,” Journal of Industrial Microbiology, vol. 14, no. 3-4, pp. 226–232, 1995. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Flury, W. T. Frankenberger Jr., and W. A. Jury, “Long-term depletion of selenium from Kesterson dewatered sediments,” Science of the Total Environment, vol. 198, no. 3, pp. 259–270, 1997. View at Publisher · View at Google Scholar · View at Scopus