About this Journal Submit a Manuscript Table of Contents
Applied and Environmental Soil Science
Volume 2013 (2013), Article ID 597824, 7 pages
http://dx.doi.org/10.1155/2013/597824
Research Article

Nitrate Sorption in an Agricultural Soil Profile

1High Institute of Agronomy, Sousse University, Chott Meriem, 4042 Sousse, Tunisia
2Applied Chemistry and Environment Research Unit, EPAM, 4000 Sousse , Tunisia
3International Livestock Research Institute, P.O. Box 30709, Nairobi, Kenya
4Laboratory of Energy and Materials (LABEM), High School of Sciences and Technology, Sousse University, 4011 Hammam Sousse, Tunisia

Received 6 March 2013; Revised 9 June 2013; Accepted 25 June 2013

Academic Editor: Marco Trevisan

Copyright © 2013 Wissem Hamdi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Increasing concentrations of in surface water and groundwater can cause ecological and public health effects and has come under increased scrutiny by both environmental scientists and regulatory agencies. For many regions though, including the Sahel of Tunisia, little is known about the sorption capacity of soils. In this project we measured sorption by a profile of an iso-humic soil from Chott Meriem, Tunisia. Soil samples were collected from four soil depths (0–25, 25–60, 60–90, and 90–120 cm) on 1 June 2011, and their sorption capacity was determined using batch experiments under laboratory conditions. The effects of contact time, the initial concentration, and the soil-solution ratio on sorption were investigated. In general, the results suggested that was weakly retained by the Chott Meriem soil profile. The quantity of sorption increased with depth, contact time, initial concentration, and soil-solution ratios. To evaluate the sorption capacities of the soil samples at concentrations ranging between 25 and 150 mg L−1 experimental data were fitted to both Freundlich and Langmuir isotherm sorption models. The results indicated that Freundlich model was better for describing sorption in this soil profile.