About this Journal Submit a Manuscript Table of Contents
Applied and Environmental Soil Science
Volume 2013 (2013), Article ID 798094, 11 pages
http://dx.doi.org/10.1155/2013/798094
Research Article

Soil-Landscape Modeling and Remote Sensing to Provide Spatial Representation of Soil Attributes for an Ethiopian Watershed

1Burie Agricultural College, P.O. Box Rissneleden 19, Sundbyberg, 17453 Stockholm, Sweden
2Amhara Regional Agricultural Research Institute (ARARI), P.O. Box 527, Bahir Dar, Ethiopia
3School of Natural Resources Management and Environmental Science, Haramaya University, P.O. Box 138, Dire Dawa, Ethiopia
4International Center for Agricultural Research in the Dry Areas (ICARDA), P.O. Box 950764, Amman 11195, Jordan

Received 5 June 2013; Revised 29 August 2013; Accepted 3 September 2013

Academic Editor: Davey Jones

Copyright © 2013 Nurhussen Mehammednur Seid et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Bouma, “The role of soil science in the land use negotiation process,” Soil Use and Management, vol. 17, no. 1, pp. 1–6, 2001. View at Scopus
  2. A. R. Mermut and H. Eswaran, “Some major developments in soil science since the mid-1960s,” Geoderma, vol. 100, no. 3-4, pp. 403–426, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. M. H. Salehi, M. K. Eghbal, and H. Khademi, “Comparison of soil variability in a detailed and a reconnaissance soil map in central Iran,” Geoderma, vol. 111, no. 1-2, pp. 45–56, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. C.-W. Ahn, M. F. Baumgardner, and L. L. Biehl, “Delineation of soil variability using geostatistics and fuzzy clustering analyses of hyperspectral data,” Soil Science Society of America Journal, vol. 63, no. 1, pp. 142–150, 1999. View at Scopus
  5. N. J. McKenzie, P. E. Gessler, P. J. Ryan, and D. A. O'Connell, “The role of terrain analysis in soil mapping,” in Terrain Analysis: Principles and Applications, J. P. Wilson and J. C. Gallant, Eds., Chapter 10, John Wiley and Sons, New York, NY, USA, 2000.
  6. A.-X. Zhu, “Mapping soil landscape as spatial continua: the neural network approach,” Water Resources Research, vol. 36, no. 3, pp. 663–677, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. P. A. Burrough, P. F. M. Van Gaans, and R. Hootsmans, “Continuous classification in soil survey: spatial correlation, confusion and boundaries,” Geoderma, vol. 77, no. 2–4, pp. 115–135, 1997. View at Publisher · View at Google Scholar · View at Scopus
  8. A.-X. Zhu, “A similarity model for representing soil spatial information,” Geoderma, vol. 77, no. 2–4, pp. 217–242, 1997. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Balkovič, G. Čemanová, J. Kollár, M. Kromka, and K. Harnová, “Mapping soils using the fuzzy approach and regression-kriging—case study from the Považský Inovec Mountains, Slovakia,” Soil and Water Research, vol. 2, no. 4, pp. 123–134, 2007. View at Scopus
  10. A. B. McBratney, M. L. Mendonça Santos, and B. Minasny, “On digital soil mapping,” Geoderma, vol. 117, no. 1-2, pp. 3–52, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. D. M. Browning and M. C. Duniway, “Digital soil mapping in the absence of field training data: a case study using terrain attributes and semi automated soil signature derivation to distinguish ecological potential,” Applied and Environmental Soil Science, vol. 42, pp. 1904–1910, 2011.
  12. S. Lamsal, S. Grunwald, G. L. Bruland, C. M. Bliss, and N. B. Comerford, “Regional hybrid geospatial modeling of soil nitrate-nitrogen in the Santa Fe River Watershed,” Geoderma, vol. 135, pp. 233–247, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. P. Scull, J. Franklin, and O. A. Chadwick, “The application of classification tree analysis to soil type prediction in a desert landscape,” Ecological Modelling, vol. 181, no. 1, pp. 1–15, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. E. Giasson, R. T. Clarke, A. V. Inda Jr., G. H. Merten, and C. G. Tornquist, “Digital soil mapping using multiple logistic regression on terrain parameters in southern Brazil,” Scientia Agricola, vol. 63, no. 3, pp. 262–268, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. A. K. Stum, Random forests applied as a soil spatial predictive model in arid Utah [M.S. thesis], Utah State University, 2010.
  16. X. Lui, J. Peterson, Z. Zhang, and S. Chandra, Improving Soil Salinity Prediction with Resolution DEM Derived for LIDAR Data, Center for GIS; School of Geography and Environmental Science Monash University, Melbourne, Australia, 2006.
  17. E. Aksoy, G. Özsoy, and M. S. Dirim, “Soil mapping approach in GIS using landsat satellite imagery and dem data,” African Journal of Agricultural Research, vol. 4, no. 11, pp. 1295–1302, 2009. View at Scopus
  18. A. Al-Shamiri and F. M. Ziadat, “Soil-landscape modeling and land suitability evaluation: the case of rainwater harvesting in a dry rangeland environment,” International Journal of Applied Earth Observation, vol. 18, pp. 157–164, 2012.
  19. D. G. Rossiter, Digital Soil Mapping: Towards a Multiple-Use Soil information System, Santa fe Bogota, Colombia, 2005.
  20. J. D. Phillips, “Spatial structures and scale in categorical maps,” Geographical and Environmental Modelling, vol. 6, no. 1, pp. 41–57, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. I. D. Moore, P. E. Gessler, G. A. Nielsen, and G. A. Peterson, “Soil attribute prediction using terrain analysis,” Soil Science Society of America Journal, vol. 57, no. 2, pp. 443–452, 1993. View at Scopus
  22. P. E. Gessler, I. D. Moore, N. J. McKenzie, and P. J. Ryan, “Soil-landscape modelling and spatial prediction of soil attributes,” International Journal of Geographical Information Systems, vol. 9, no. 4, pp. 421–432, 1995. View at Scopus
  23. H.-T. Jiang, F.-F. Xu, Y. Cai, and D.-Y. Yang, “Weathering characteristics of sloping fields in the Three Gorges Reservoir Area, China,” Pedosphere, vol. 16, no. 1, pp. 50–55, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. X.-Y. Zhang, Y.-Y. Sui, X.-D. Zhang, K. Meng, and S. J. Herbert, “Spatial variability of nutrient properties in black soil of northeast china1 1 project supported by the National Basic Research Program (973 Program) of China (No. 2005CB121108) and the heilongjiang provincial natural science foundation of China (No. C2004-25),” Pedosphere, vol. 17, no. 1, pp. 19–29, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. I. Esfandiarpoor Borujeni, M. H. Salehi, N. Toomanian, J. Mohammadi, and R. M. Poch, “The effect of survey density on the results of geopedological approach in soil mapping: a case study in the Borujen region, Central Iran,” Catena, vol. 79, no. 1, pp. 18–26, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. S. L. Kuriakose, S. Devkota, D. G. Rossiter, and V. G. Jetten, “Prediction of soil depth using environmental variables in an anthropogenic landscape, a case study in the Western Ghats of Kerala, India,” Catena, vol. 79, no. 1, pp. 27–38, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. U. Mishra, Predicting storage and dynamics of soil organic carbon at a regional scale [Ph.D. thesis], Ohio State University, 2009.
  28. A. Marchetti, C. Piccini, S. Santucci, I. Chiuchiarelli, and R. Francaviglia, “Simulation of soil types in Teramo province (Central Italy) with terrain parameters and remote sensing data,” Catena, vol. 85, no. 3, pp. 267–273, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. V. L. Mulder, S. de Bruin, M. E. Schaepman, and T. R. Mayr, “The use of remote sensing in soil and terrain mapping—a review,” Geoderma, vol. 162, no. 1-2, pp. 1–19, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. Food and Agriculture Organization (FAO), Guidelines for Soil Descriptions, FAO, Rome, Italy, 2006.
  31. P. R. Day, “Hydrometer method of particle size analysis,” in Methods of Soil Analysis, C. A. Black, Ed., Agronomy Part II, No. 9, pp. 562–563, American Society of Agronomy, Madison, Wis, USA, 1965.
  32. G. R. Blake, “Bulk density,” in Methods of Soil Analysis Agron, C. A. Black, Ed., Part I, No. 9., pp. 374–399, American Society of Agronomy, Madison, Wis, USA, 1965.
  33. A. Walkley and C. A. Black, “An examination of different methods for determining soil organic matter and the proposed modification by the chromic acid titration method,” Soil Science, vol. 37, pp. 29–38, 1934.
  34. S. Sahlemeden and B. Taye, Procedure for Soil and Plant Analysis, National Soil Research Center; Ethiopian Agricultural Research Organization, Addis Ababa, Ethiopia, 2000.
  35. S. R. Olsen, C. V. Cole, F. S. Watanabe, and L. A. Dean, Estimation of Available Phosphorus in Soil by Extraction with Sodium Bicarbonate, vol. 939 of Circular, USDA, 1954.
  36. J. Murphy and J. P. Riley, “A modified single solution method for the determination of phosphate in natural waters,” Analytica Chimica Acta, vol. 27, pp. 31–36, 1962. View at Scopus
  37. F. M. Ziadat, “Analyzing digital terrain attributes to predict soil attributes for a relatively large area,” Soil Science Society of America Journal, vol. 69, no. 5, pp. 1590–1599, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. F. M. Ziadat, “Prediction of soil depth from digital terrain data by integrating statistical and visual approaches,” Pedosphere, vol. 20, no. 3, pp. 361–367, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. P. Roudgarmi, M. Monavari, J. Feghhi, J. Nouri, and N. Khorasani, “Environmental impact prediction using remote sensing images,” Journal of Zhejiang University A, vol. 9, no. 3, pp. 381–390, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. M. L. Kunkel, A. N. Flores, T. J. Smith, J. P. McNamara, and S. G. Benner, “A simplified approach for estimating soil carbon and nitrogen stocks in semi-arid complex terrain,” Geoderma, vol. 165, no. 1, pp. 1–11, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. K. Sumfleth and R. Duttmann, “Prediction of soil property distribution in paddy soil landscapes using terrain data and satellite information as indicators,” Ecological Indicators, vol. 8, no. 5, pp. 485–501, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. J. Van de Wauw, G. Baert, J. Moeyersons et al., “Soil-landscape relationships in the basalt-dominated highlands of Tigray, Ethiopia,” Catena, vol. 75, no. 1, pp. 117–127, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. P. E. Gessler, O. A. Chadwick, F. Chamran, L. Althouse, and K. Holmes, “Modeling soil-landscape and ecosystem properties using terrain attributes,” Soil Science Society of America Journal, vol. 64, no. 6, pp. 2046–2056, 2000. View at Scopus
  44. I. V. Florinsky, R. G. Eilers, G. R. Manning, and L. G. Fuller, “Prediction of soil properties by digital terrain modelling,” Environmental Modelling and Software, vol. 17, no. 3, pp. 295–311, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. P. Burrough, “Soil variability: a late 20th century view,” Soils and Fertilizers, vol. 56, pp. 529–562, 1993.
  46. B. P. Umali, D. P. Oliver, S. Forrester et al., “The effect of terrain and management on the spatial variability of soil properties in an apple orchard,” Catena, vol. 93, pp. 38–48, 2012. View at Publisher · View at Google Scholar · View at Scopus
  47. E. Dobos, E. Micheli, M. F. Baumgardner, L. Biehl, and T. Helt, “Use of combined digital elevation model and satellite radiometric data for regional soil mapping,” Geoderma, vol. 97, no. 3-4, pp. 367–391, 2000. View at Publisher · View at Google Scholar · View at Scopus
  48. Y. A. Pachepsky, D. J. Timlin, and W. J. Rawls, “Soil water retention as related to topographic variables,” Soil Science Society of America Journal, vol. 65, no. 6, pp. 1787–1795, 2001. View at Scopus
  49. Y. Sulaeman and H. Subagyo, “Modeling soil landscape relationships,” Jurnal Ilmu Tanah Dan Lingkungan, vol. 5, no. 2, pp. 1–14, 2005.
  50. S. Zhang, Y. Huang, C. Shen, H. Ye, and Y. Du, “Spatial prediction of soil organic matter using terrain indices and categorical variables as auxiliary information,” Geoderma, vol. 171-172, pp. 35–43, 2012. View at Publisher · View at Google Scholar · View at Scopus
  51. A. Bayer, M. Bachmann, A. Müller, and H. Kaufmann, “A comparison of feature-based MLR and PLS regression techniques for the prediction of three soil constituents in a degraded south african ecosystem,” Applied and Environmental Soil Science, vol. 2012, Article ID 971252, 20 pages, 2012. View at Publisher · View at Google Scholar
  52. T. Selige, J. Böhner, and U. Schmidhalter, “High resolution topsoil mapping using hyperspectral image and field data in multivariate regression modeling procedures,” Geoderma, vol. 136, no. 1-2, pp. 235–244, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. J. A. Thompson, J. C. Bell, and C. A. Butler, “Digital elevation model resolution: effects on terrain attribute calculation and quantitative soil-landscape modeling,” Geoderma, vol. 100, no. 1-2, pp. 67–89, 2001. View at Publisher · View at Google Scholar · View at Scopus
  54. S. Wechsler, “Uncertainties associated with digital elevation models for hydrologic applications: a review,” Hydrology and Earth System Sciences, vol. 3, pp. 2343–2384, 2006.
  55. S. Chabrillat, A. F. H. Goetz, L. Krosley, and H. W. Olsen, “Use of hyperspectral images in the identification and mapping of expansive clay soils and the role of spatial resolution,” Remote Sensing of Environment, vol. 82, no. 2-3, pp. 431–445, 2002. View at Publisher · View at Google Scholar · View at Scopus
  56. H. Gerighausen, G. Menz, and H. Kaufmann, “Spatially explicit estimation of clay and organic carbon content in agricultural soils using multi-annual imaging spectroscopy data,” Applied and Environmental Soil Science, vol. 2012, Article ID 868090, 23 pages, 2012. View at Publisher · View at Google Scholar
  57. H. Bartholomeus, G. Schaepman-Strub, D. Blok, R. Sofronov, and S. Udaltsov, “Research article spectral estimation of soil properties in siberian tundra soils and relations with plant species composition,” Applied and Environmental Soil Science, vol. 2012, Article ID 241535, 13 pages, 2012. View at Publisher · View at Google Scholar
  58. J. A. Thomasson, R. Sui, M. S. Cox, and A. Al-Rajehy, “Soil reflectance sensing for determining soil properties in precision agriculture,” Transactions of the American Society of Agricultural Engineers, vol. 44, no. 6, pp. 1445–1453, 2001. View at Scopus