About this Journal Submit a Manuscript Table of Contents
Applied and Environmental Soil Science
Volume 2013 (2013), Article ID 891534, 13 pages
http://dx.doi.org/10.1155/2013/891534
Research Article

The Use of LiDAR Terrain Data in Characterizing Surface Roughness and Microtopography

1Hobart and William Smith Colleges, 318 Stern Hall Hobart and William Smith Colleges, Geneva, NY 14456, USA
2Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, PA 16802, USA
3Department of Geography, The Pennsylvania State University, University Park, PA 16802, USA

Received 21 December 2012; Accepted 10 March 2013

Academic Editor: Artemi Cerda

Copyright © 2013 Kristen M. Brubaker et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. ECOMAP, National Hierarchical Framework of Ecological Units, USDA Forest Service, Washington, DC, USA, 1993.
  2. D. T. Cleland, P. E. Avers, W. H. McNab et al., “National hierarchical framework of ecological units,” in Ecosystem Management, M. S. Boyce and A. Haney, Eds., pp. 181–200, Yale University, New Haven, Conn, USA, 1997.
  3. J. Franklin, “Predictive vegetation mapping: geographic modelling of biospatial patterns in relation to environmental gradients,” Progress in Physical Geography, vol. 19, no. 4, pp. 474–499, 1995. View at Scopus
  4. W. L. Myers, “Landscape scale ecological mapping of Pennsylvania forests,” Research Report ER2002-2, Environmental Resources Research Institute, University Park, Pa, USA, 2000.
  5. P. V. Bolstad, W. Swank, and J. Vose, “Predicting Southern Appalachian overstory vegetation with digital terrain data,” Landscape Ecology, vol. 13, no. 5, pp. 271–283, 1998. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Dikau, “The application of a digital relief model to landform analysis in geomorphology,” in Three Dimensional Applications in Geographical Information Systems, J. Raper, Ed., pp. 51–77, Taylor and Fancis, New York, NY, USA, 1989.
  7. I. D. Moore, P. E. Gessler, G. A. Nielsen, and G. A. Peterson, “Soil attribute prediction using terrain analysis,” Soil Science Society of America Journal, vol. 57, no. 2, pp. 443–452, 1993. View at Scopus
  8. D. M. Browning and M. C. Duniway, “Digital soil mapping in the absence of field training data: a case study using terrain attributes and semiautomated soil signature derivation to distinguish ecological potential,” Applied and Environmental Soil Science, vol. 2011, Article ID 421904, 12 pages, 2011. View at Publisher · View at Google Scholar
  9. R. A. Brown, P. McDaniel, and P. E. Gessler, “Terrain attribute modeling of volcanic ash distributions in Northern Idaho,” Soil Science Society of America Journal, vol. 76, pp. 179–187, 2012.
  10. B. L. McGlynn and J. Seibert, “Distributed assessment of contributing area and riparian buffering along stream networks,” Water Resources Research, vol. 39, no. 4, pp. TNN21–TNN27, 2003. View at Scopus
  11. D. F. Maune, Ed., Digital Elevation Models and Technologies and Applications: The DEM User Manual, The American Society for Photogrammetry and Remote Sensing, Bethesda, Md, USA, 2nd edition, 2007.
  12. K. Kraus and N. Pfeifer, “Determination of terrain models in wooded areas with airborne laser scanner data,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 53, no. 4, pp. 193–203, 1998. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Su and E. Bork, “Influence of vegetation, slope, and lidar sampling angle on DEM accuracy,” Photogrammetric Engineering and Remote Sensing, vol. 72, no. 11, pp. 1265–1274, 2006. View at Scopus
  14. L. P. Spaete, N. F. Glenn, D. R. Derryberry, T. T. Sankey, J. J. Mitchell, and S. P. Hardegree, “Vegetation and slope effects on accuracy of a LIDAR-derived DEM in the sagebrush steppe,” Remote Sensing Letters, vol. 2, no. 4, pp. 317–326, 2010.
  15. J. McKean and J. Roering, “Objective landslide detection and surface morphology mapping using high-resolution airborne laser altimetry,” Geomorphology, vol. 57, no. 3-4, pp. 331–351, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. T. Dunne, W. Zhang, and B. F. Aubry, “Effects of rainfall, vegetation, and microtopography on infiltration and runoff,” Water Resources Research, vol. 27, no. 9, pp. 2271–2285, 1991. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Lavee and S. Pariente, “Spatial variability of soil properties along a climatic gradient: guide to Judean Desert Climatalogical Gradient Excursion,” in IGU GERTEC Commission Meeting, pp. 16–30, Jerusalem, Israel, May 1995.
  18. S. W. Beatty, “Influence of microtopography and canopy species on spatial patterns of forest understory plants,” Ecology, vol. 65, no. 5, pp. 1406–1419, 1984. View at Scopus
  19. T. Enoki, “Microtopography and distribution of canopy trees in a subtropical evergreen broad-leaved forest in the northern part of Okinawa Island, Japan,” Ecological Research, vol. 18, no. 2, pp. 103–113, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. R. J. Naiman and H. Décamps, “The ecology of interfaces: riparian zones,” Annual Review of Ecology and Systematics, vol. 28, pp. 621–658, 1997. View at Publisher · View at Google Scholar · View at Scopus
  21. M. M. Pollock, R. J. Naiman, and T. A. Hanley, “Plant species richness in riparian wetlands-a test of biodiversity theory,” Ecology, vol. 79, no. 1, pp. 94–105, 1998. View at Scopus
  22. C. H. Huang, “Quantification of soil microtopography and surface roughness,” in Fractals in Soil Science, P. Baveye, J. Y. Parlange, and B. Stewart, Eds., CRC Press, Boca Raton, Fla, USA, 1998.
  23. G. Govers, I. Takken, and K. Helming, “Soil roughness and overland flow,” Agronomie, vol. 20, no. 2, pp. 131–146, 2000. View at Scopus
  24. E. C. Kamphorst, V. Jetten, J. Guérif et al., “Predicting depressional storage from soil surface roughness,” Soil Science Society of America Journal, vol. 64, no. 5, pp. 1749–1758, 2000. View at Scopus
  25. N. F. Glenn, D. R. Streutker, D. J. Chadwick, G. D. Thackray, and S. J. Dorsch, “Analysis of LiDAR-derived topographic information for characterizing and differentiating landslide morphology and activity,” Geomorphology, vol. 73, no. 1-2, pp. 131–148, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. K. L. Frankel and J. F. Dolan, “Characterizing arid region alluvial fan surface roughness with airborne laser swath mapping digital topographic data,” Journal of Geophysical Research F, vol. 112, no. 2, Article ID F02025, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. R. J. Schaetzl, S. F. Burns, D. L. Johnson, and T. W. Small, “Tree uprooting: review of impacts on forest ecology,” Vegetatio, vol. 79, no. 3, pp. 165–176, 1988. View at Publisher · View at Google Scholar · View at Scopus
  28. C. M. Rumbaitis Del Rio, “Changes in understory composition following catastrophic windthrow and salvage logging in a subalpine forest ecosystem,” Canadian Journal of Forest Research, vol. 36, no. 11, pp. 2943–2954, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. G. J. Beke and J. A. McKeague, “Influence of tree windthrow on the properties and classification of selected forested soils from Nova Scotia,” Canadian Journal of Soil Science, vol. 64, no. 2, pp. 195–207, 1984. View at Scopus
  30. R. Andrle and A. D. Abrahams, “Fractal techniques and the surface roughness of talus slopes,” Earth Surface Processes & Landforms, vol. 14, no. 3, pp. 197–209, 1989. View at Scopus
  31. M. J. Bai, D. Xu, Y. N. Li, and J. S. Li, “Evaluation of spatial and temporal variability of infiltration on a surface irrigation field,” Journal of Soil and Water Conservation, vol. 19, pp. 120–123, 2005 (Chinese).
  32. C.-H. Huang and J. M. Bradford, “Applications of a laser scanner to quantify soil microtopography,” Soil Science Society of America Journal, vol. 56, no. 1, pp. 14–21, 1992. View at Scopus
  33. C. H. Grohmann, M. J. Smith, and C. Riccomini, “Multiscale analysis of topographic surface roughness in the Midland Valley, Scotland,” IEEE Transactions on Geoscience and Remote Sensing, vol. 49, no. 4, pp. 1200–1213, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. M. P. Bishop, L. A. James, J. F. Shroder, and S. J. Walsh, “Geospatial technologies and digital geomorphological mapping: concepts, issues and research,” Geomorphology, vol. 137, pp. 5–26, 2012.
  35. “PAMAP LiDAR Quality Assurance Report LiDAR Block 2007,” Dewberry, Fairfax, Va, USA, 2009.
  36. “Shale Hills 2010 NCALM CZO project report,” National Center for Airborne Laser Mapping (NCALM) 2010.
  37. C. H. Schultz, Ed., The Geology of Pennsylvania, Geologic Survey Special Publication 1, 1999.
  38. E. J. Ciolkosz, R. C. Cronce, and W. D. Sevon, Periglacial Features in Pennsylvania, Pennsylvania State University, Agron. Ser. 92, 1986.
  39. R. R. Shields, A shallow seismic refraction study of the soil mantle and bedrock configuration of Leading Ridge Watershed Two [M.S. thesis], School of Forest Resources. Penn State University, University Park, Pa, USA, 1966.
  40. J. A. Lynch and E. S. Corbett, “Evaluation of best management practices for controlling nonpoint pollution from silvicultural operations,” Water Resources Bulletin, vol. 26, pp. 41–52, 1990.
  41. S. L. Brantley, T. S. White, A. F. White et al., “Frontiers in exploration of the critical zone: report of a workshop sponsored by the National Science Foundation (NSF),” Newark, Del, USA, 2006.
  42. S. P. Anderson, R. C. Bales, and C. J. Duffy, “Critical zone observatories: building a network to advance interdisciplinary study of Earth surface processes,” Mineralogical Magazine, vol. 72, no. 1, pp. 7–10, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. NRCS, “Soil Survey Geographic (SSURGO) Database,” USDA Natural Resources, 2011.
  44. D. G. Tarboton, R. L. Bras, and I. Rodriguez-Iturbe, “On the extraction of channel networks from digital elevation data,” Hydrological Processes, vol. 5, no. 1, pp. 81–100, 1991. View at Scopus
  45. D. E. Tenenbaum, L. E. Band, S. T. Kenworthy, and C. L. Tague, “Analysis of soil moisture patterns in forested and suburban catchments in Baltimore, Maryland, using high-resolution photogrammetric and LIDAR digital elevation datasets,” Hydrological Processes, vol. 20, no. 2, pp. 219–240, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. X. Liu, Z. Zhang, J. Peterson, and S. Chandra, “The effect of LiDAR data density on DEM accuracy,” in Proceedings of the International Congress on Modelling and Simulation, pp. 1363–1369, Modelling and Simulation Society of Australia and New Zealand Inc., 2007.
  47. H. Mitasova, L. Mitas, and R. S. Harmon, “Simultaneous spline approximation and topographic analysis for lidar elevation data in open-source GIS,” IEEE Geoscience and Remote Sensing Letters, vol. 2, no. 4, pp. 375–379, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. E. J. Ciolkosz, B. J. Carter, M. T. Hoover, R. C. Cronce, W. J. Waltman, and R. R. Dobos, “Genesis of soils and landscapes in the Ridge and Valley province of central Pennsylvania,” Geomorphology, vol. 3, no. 3-4, pp. 245–261, 1990. View at Scopus