About this Journal Submit a Manuscript Table of Contents
Applied and Environmental Soil Science
Volume 2013 (2013), Article ID 957956, 10 pages
http://dx.doi.org/10.1155/2013/957956
Research Article

Sediment Transport Model for a Surface Irrigation System

1Biological Systems Engineering, University of Wisconsin, Madison, WI 53706, USA
2Agricultural and Food Engineering Department, Indian Institute of Technology, Kharagpur 721302, India

Received 16 March 2013; Revised 25 June 2013; Accepted 11 July 2013

Academic Editor: Keith Smettem

Copyright © 2013 Damodhara R. Mailapalli et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Food and Agriculture Organization, AQUASTAT, http://www.fao.org/nr/water/aquastat/water_use/index.stm, 2013.
  2. R. D. Berg and D. L. Carter, “Furrow erosion and sediment losses on irrigated cropland,” Journal of Soil & Water Conservation, vol. 35, no. 6, pp. 267–270, 1980. View at Scopus
  3. W. D. Kemper, T. J. Trout, M. J. Brown, and R. C. Rosenau, “Furrow erosion and water and soil management,” Transactions of the American Society of Agricultural Engineers, vol. 28, no. 5, pp. 1564–1572, 1985. View at Scopus
  4. T. J. Trout, “Furrow irrigation erosion and sedimentation: on-field distribution,” Transactions of the American Society of Agricultural Engineers, vol. 39, no. 5, pp. 1717–1723, 1996. View at Scopus
  5. L. Mateos and J. V. Giráldez, “Suspended load and bed load in irrigation furrows,” Catena, vol. 64, no. 2-3, pp. 232–246, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. D. R. Mailapalli, N. S. Raghuwanshi, and R. Singh, “Sediment transport in furrow irrigation,” Irrigation Science, vol. 27, no. 6, pp. 449–456, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. P. K. Koluvek, K. K. Tanji, and T. J. Trout, “Overview of soil erosion from irrigation,” Journal of Irrigation & Drainage Engineering, vol. 119, no. 6, pp. 929–946, 1993. View at Scopus
  8. M. J. Brown, D. L. Carter, G. A. Lehrsch, and R. E. Sojka, “Seasonal trends in furrow irrigation erosion in southern Idaho,” Soil Technology, vol. 8, no. 2, pp. 119–126, 1995. View at Scopus
  9. T. J. Trout, “Sediment transport in irrigation furrows,” in Proceedings of the 10th International Soil Conservation Organization Meeting Held May 24–29, 1999 at Purdue University and the USDA-ARS National Soil Erosion Research Laboratory, D. E. Stott, R. H. Mohtar, and G. C. Steinhardt, Eds., pp. 710–716, 2001.
  10. R. Fernández-Gómez, L. Mateos, and J. V. Giráldez, “Furrow irrigation erosion and management,” Irrigation Science, vol. 23, no. 3, pp. 123–131, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. C. J. Everts and D. L. Carter, Furrow Erosion and Topsoil Losses, Current information series no. 586, College of Agriculture, University of Idaho, Moscow, Russia, 1981.
  12. K. J. Fornstrom and J. Borelli, “Design and management procedure for minimising erosion from furrow irrigated cropland,” Paper 84-2595, American Society of Association Executives, St. Joseph, Mich, USA, 1994.
  13. R. P. C. Morgan, “The European soil erosion model: an update on its structure and research base,” in Conserving Soil Resources: European Perspectives, R. J. Rickson, Ed., pp. 286–299, CAB Int.Oxton, Scotland, UK, 1995.
  14. W. S. Merritt, R. A. Letcher, and A. J. Jakeman, “A review of erosion and sediment transport models,” Environmental Modelling and Software, vol. 18, no. 8-9, pp. 761–799, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. G. R. Foster and L. D. Meyer, “Mathematical simulation of upland erosion by fundamental erosion mechanics,” Present and Prospective Technology for Predicting Sediment Yield and Sources, USDA, ARS Publication ARS-S40, USDA, Agricultural Research Service, Nat. Tech. Information Service, Springfield, Va, USA, 1972.
  16. M. B. Abbott, J. C. Bathurst, J. A. Cunge, P. E. O'Connell, and J. Rasmussen, “An introduction to the European hydrological system—systeme hydrologique Europeen, “SHE”, 1: history and philosophy of a physically-based, distributed modelling system,” Journal of Hydrology, vol. 87, no. 1-2, pp. 45–59, 1986. View at Scopus
  17. A. J. Jakeman and G. M. Hornberger, “How much complexity is warranted in a rainfall-runoff model?” Water Resources Research, vol. 29, no. 8, pp. 2637–2649, 1993. View at Publisher · View at Google Scholar · View at Scopus
  18. C. C. Wu and L. D. Meyer, “Simulating transport of nonuniform sediment along flatland furrows,” Transactions of the American Society of Agricultural Engineers, vol. 32, no. 5, pp. 1651–1661, 1989. View at Scopus
  19. T. S. Strelkoff, A. J. Clemmens, and B. V. Schmidt, SRFR, Version 3.21-a Model for Simulating Surface Irrigation in Borders, Basins and Furrows, USWCL, USDA/ARS, Phoenix, Ariz, USA, 1998.
  20. D. L. Bjorneberg, T. J. Trout, R. E. Sojka, and J. K. Aase, “Evaluating WEPP-predicted infiltration, runoff, and soil erosion for furrow irrigation,” Transactions of the American Society of Agricultural Engineers, vol. 42, no. 6, pp. 1733–1741, 1999. View at Scopus
  21. D. L. Bjorneberg and T. J. Trout, “Evaluating WEPP predicted on-field furrow erosion,” in Proceedings of the 10th International Soil Conservation Organization (ISCO '99), West Lafayette, Ind, USA, May 1999.
  22. E. M. Laursen, “The total sediment load of streams,” Journal of Hydraulics Divison, vol. 84, pp. 1530-1–1530-36, 1958.
  23. C. T. Yang, “Incipient motion and sediment transport,” Journal of Hydraulics Divison, vol. 99, no. 10, pp. 1679–1704, 1973. View at Scopus
  24. M. S. Yalin, “An expression for bed-load transportation,” Journal of Hydraulics Divison, vol. 89, no. 3, pp. 221–250, 1963.
  25. T. S. Strelkoff and D. L. Bjorneberg, “Hydraulic modeling of irrigation-induced furrow erosion,” in Proceedings of the 10th International Soil Conservation Organization Conference, D. E. Stott, R. H. Mohtar, and G. C. Steinhardt, Eds., Sustaining the Global Farm, pp. 699–705, West Lafayette, Ind, USA, May 1999.
  26. D. R. Mailapalli, R. Singh, and N. S. Raghuwanshi, “Physically based model for simulating flow in furrow irrigation. I: model development,” Journal of Irrigation and Drainage Engineering, vol. 135, no. 6, pp. 739–746, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. S. Fok and S. H. Chiang, “2-D infiltration equations for furrow irrigation,” Journal of Irrigation and Drainage Engineering, vol. 110, no. 2, pp. 208–217, 1984. View at Scopus
  28. M. D. Rao, N. S. Raghuwanshi, and R. Singh, “Development of a physically based 1D-infiltration model for irrigated soils,” Agricultural Water Management, vol. 85, no. 1-2, pp. 165–174, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. W. R. Walker and G. V. Skogerboe, Surface Irrigation: Theory and Practice, Prentice Hall, Englewood Cliffs, NJ, USA, 1987.
  30. T. J. Trout and W. H. Neibling, “Erosion and sedimentation processes on irrigated fields,” Journal of Irrigation & Drainage Engineering, vol. 119, no. 6, pp. 947–963, 1993. View at Scopus
  31. W. H. Green and G. Ampt, “Studies on soil physics. I: the flow of air and water through soils,” Journal of Agricultural Sciences, vol. 4, no. 1, pp. 1–24, 1911.
  32. J. P. Bennett, “Concepts of mathematical modelling of sediment yield,” Water Resources Research, vol. 10, no. 3, pp. 485–492, 1974. View at Scopus
  33. D. L. Bjorneberg, T. J. Trout, R. E. Sojka, and J. K. Aase, “Evaluating WEPP-predicted infiltration, runoff, and soil erosion for furrow irrigation,” Transactions of the American Society of Agricultural Engineers, vol. 42, no. 6, pp. 1733–1741, 1999. View at Scopus
  34. W. H. Graf, Hydraulics of Sediment Transport, McGraw-Hill Book, New York, NY, USA, 1971.
  35. D. C. Flanagan and S. J. Livingston, Eds., “USDA-water erosion prediction project: WEPP user summary,” NSERL Rep 11, National Soil Erosion Research Laboratoy, West Lafayatte, Ind, USA, 1995.
  36. S. C. Finkner, M. A. Nearing, G. R. Foster, and J. E. Gilley, “Simplified equation for modeling sediment transport capacity,” Transactions of the American Society of Agricultural Engineers, vol. 32, no. 5, pp. 1545–1550, 1989. View at Scopus
  37. D. R. Mailapalli, Development and testing of physically based model for simulating flow and sediment transport in furrow irrigation [Ph.D. thesis], Agricultural and Food Engineering Department, Indian Institute of Technology, Kharagpur, India, 2006.
  38. D. R. Mailapalli, N. S. Raghuwanshi, and R. Singh, “Physically based model for simulating flow in furrow irrigation. II: model evaluation,” Journal of Irrigation and Drainage Engineering, vol. 135, no. 6, pp. 747–754, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. G. H. Schmitz and G. J. Seus, “Mathematical zero-inertia modeling of surface irrigation. Advance in borders,” Journal of Irrigation and Drainage Engineering, vol. 116, no. 5, pp. 603–615, 1990. View at Scopus