About this Journal Submit a Manuscript Table of Contents
Applied and Environmental Soil Science
Volume 2013 (2013), Article ID 960629, 9 pages
Research Article

Field-Scale Evaluation of Biosolids-Derived Organomineral Fertilisers Applied to Ryegrass (Lolium perenne L.) in England

1School of Applied Science, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK
2National Centre for Engineering in Agriculture, University of Southern Queensland, Building Z2, West Street, Toowoomba, QLD 4350, Australia
3Harper Adams University, Newport, Shropshire TF10 8NB, UK

Received 3 August 2013; Accepted 11 September 2013

Academic Editor: Rodrigo Studart Corrêa

Copyright © 2013 Diogenes L. Antille et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Council of the European Communities, “Council Directive concerning the protection of water against pollution caused by nitrates from agricultural sources. Council Directive of 31 December 1991 (91/676/EEC),” Official Journal of the European Communities, vol. L375, pp. 1–5, 1991.
  2. European Commission, “Environment: sewage sludge,” 2012, http://ec.europa.eu/environment/waste/sludge/index.htm.
  3. Department for Environment, Food, and Rural Affairs, Sewage Treatment in the UK: UK Implementation of the EC Urban Waste Water Treatment Directive, PB 6655. DEFRA Publications, London, UK, 2002.
  4. D. Edge, “Perspectives for nutrient removal from sewage and implications for sludge strategy,” Environmental Technology, vol. 20, no. 7, pp. 759–763, 1999. View at Scopus
  5. D. L. Antille, Formulation, utilisation and evaluation of organomineral fertilisers [Engineering Doctorate thesis], Cranfield University, Cranfield, UK, 2011.
  6. J. Petts, “Incineration as a waste management option,” in Waste Incineration and the Environment, R. E. Hester and R. M. Harrison, Eds., Royal Society of Chemistry, Cambridge, UK, 1994.
  7. P. J. Moseley, T. H. Misselbrook, B. F. Pain, R. Earl, and R. J. Godwin, “The effect of injector tine design on odour and ammonia emissions following injection of bio-solids into arable cropping,” Journal of Agricultural Engineering Research, vol. 71, no. 4, pp. 385–394, 1998. View at Scopus
  8. Council of the European Communities, “Council Directive 99/31/EC of 26 April 1999 on the landfill of waste,” Official Journal of the European Communities, vol. L182, pp. 1–19, 1999.
  9. L. E. Sommers, “Chemical composition of sewage sludges and analysis of their potential use as fertilizers,” Journal of Environmental Quality, vol. 6, no. 2, pp. 225–232, 1977. View at Scopus
  10. W. Bowden and M. J. Hann, “The availability of nitrogen following topsoil application of liquid digested sludge,” Nutrient Cycling in Agroecosystems, vol. 47, no. 2, pp. 167–172, 1996. View at Scopus
  11. S. I. Torri and R. S. Corrêa, “Downward movement of potentially toxic elements in biosolids amended soils,” Applied and Environmental Soil Science, vol. 2012, Article ID 145724, 7 pages, 2012. View at Publisher · View at Google Scholar
  12. R. D. Davis, “The impact of EU and UK environmental pressures on the future of sludge treatment and disposal,” Journal of the Chartered Institution of Water and Environmental Management, vol. 10, no. 1, pp. 65–69, 1996. View at Scopus
  13. R. S. Zeigler and S. Mohanty, “Support for international agricultural research: current status and future challenges,” New Biotechnology, vol. 27, no. 5, pp. 565–572, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. C. H. McAllister, P. H. Beatty, and A. G. Good, “Engineering nitrogen use efficient crop plants: the current status,” Plant Biotechnology Journal, vol. 10, no. 9, pp. 1011–1025, 2012.
  15. Cabinet Office, Food Matters—Towards a Strategy for the 21st Century, The Cabinet Office, London, 2008, http://webarchive.nationalarchives.gov.uk/+/http:/www.cabinetoffice.gov.uk/media/cabinetoffice/strategy/assets/food/food_matters1.pdf.
  16. C. J. Dawson and J. Hilton, “Fertiliser availability in a resource-limited world: production and recycling of nitrogen and phosphorus,” Food Policy, vol. 36, no. 1, pp. S14–S22, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. R. A. Fischer, D. Byerlee, and G. O. Edmeades, “Can technology deliver on the yield challenge to 2050? FAO: Economic and Social Development Department. Expert Meeting on How to Feed the World in 2050,” 2009, ftp://ftp.fao.org/docrep/fao/012/ak977e/ak977e00.pdf.
  18. D. L. Antille, R. Sakrabani, S. F. Tyrrel, M. S. Le, and R. J. Godwin, “Characterisation of organomineral fertilisers derived from nutrient-enriched biosolids granules,” Applied and Environmental Soil Science, vol. 2013, Article ID 694597, 11 pages, 2013. View at Publisher · View at Google Scholar
  19. Meteorological Office, “Historic station data,” 2010, http://www.metoffice.gov.uk/climate/uk/stationdata/.
  20. D. W. King, Soils of the Luton and Bedford Districts: A Reconnaissance Survey, The Soil Survey of England and Wales, Harpenden, UK, 1969.
  21. D. L. Antille, R. Sakrabani, and R. J. Godwin, “Nitrogen and phosphorus availability following topsoil application of organomineral fertilisers (OMF),” ASABE, vol. 5, pp. 4134–4150, 2012.
  22. L. P. Smith and B. D. Trafford, “Climate and drainage. Ministry of Agriculture, Fisheries and Food,” Technical Bulletin No 34, The Stationery Office, London, UK, 1976.
  23. Ministry of Agriculture, Fisheries and Food, The Analysis of Agricultural Materials, Reference Book 427, The Stationery Office, London, UK, 3rd edition, 1986.
  24. P. E. Sparrow, “The comparison of five response curves for representing the relationship between the annual dry-matter, yield of grass herbage and fertilizer nitrogen,” The Journal of Agricultural Science, vol. 93, no. 3, pp. 513–520, 1979.
  25. J. Morrison, M. V. Jackson, and P. E. Sparrow, “The response of perennial ryegrass to fertilizer nitrogen in relation to climate and soil,” Report of the Joint ADAS/GRI Grassland Manuring Trial GM20. Grassland Research Institute Technical Report No. 27, GRI, Hurley, Berkshire, UK, 1980.
  26. K. G. Cassman, S. Peng, D. C. Olk et al., “Opportunities for increased nitrogen-use efficiency from improved resource management in irrigated rice systems,” Field Crops Research, vol. 56, no. 1-2, pp. 7–38, 1998. View at Publisher · View at Google Scholar · View at Scopus
  27. A. E. Johnston and P. R. Poulton, Nitrogen in Agriculture: An Overview and Definitions of Nitrogen Use Efficiency, Proc. No. 651, The International Fertiliser Society, York, UK, 2009.
  28. Department for Environment, Food and Rural Affairs, Fertiliser Manual, Reference Book 209, The Stationery Office, London, UK, 8th edition, 2010.
  29. British Standards EN 13654-2, Soil Improvers and Growing Media. Determination of Nitrogen, Dumas Method. Equivalent to ISO 5725:1994, The British Standards Institution, London, UK, 2001.
  30. S. R. Olsen, C. V. Cole, F. S. Watanabe, and L. A. Dean, “Estimation of available phosphorus in soils by extraction with sodium bicarbonate,” USDA Circular No. 939, 1954.
  31. British Standard 7755 Section 3.6, Determination of Phosphorus: Spectrometric Determination of Phosphorus Soluble in Sodium Hydrogen Carbonate Solution., Equivalent to ISO 11263:1994, The British Standards Institution, London, UK, 1995.
  32. GenStat, GenStat Release 14.1, VSN International, Hemel Hempstead, UK, 14th edition, 2011.
  33. P. McFeely and D. MacCarthy, “Effect of time on initial spring grazing and nitrogen use on pasture production,” Irish J. of Agricultural Research, vol. 20, no. 2-3, pp. 137–146, 1981.
  34. M. O'Donovan, L. Delaby, G. Stakelum, and P. Dillon, “Effect of autumn/spring nitrogen application date and level on dry matter production and nitrogen efficiency in perennial ryegrass swards,” Irish Journal of Agricultural and Food Research, vol. 43, no. 1, pp. 31–41, 2004. View at Scopus
  35. P. D. Penning, A. J. Parsons, R. J. Orr, and T. T. Treacher, “Intake and behaviour responses by sheep to changes in sward characteristics under continuous stocking,” Grass and Forage Science, vol. 46, no. 1, pp. 15–28, 1991. View at Scopus
  36. C. J. Watson, R. J. Stevens, M. K. Garrett, and C. H. McMurray, “Efficiency and future potential of urea for temperate grassland,” Fertilizer Research, vol. 26, no. 1–3, pp. 341–357, 1990. View at Publisher · View at Google Scholar · View at Scopus
  37. R. Sylvester-Bradley, “Scope for more efficient use of fertilizer nitrogen,” Soil Use and Management, vol. 9, no. 3, pp. 112–117, 1993.
  38. R. J. Skinner and A. D. Todd, “Twenty-five years of monitoring pH and nutrient status of soils in England and Wales,” Soil Use and Management, vol. 14, no. 3, pp. 162–169, 1998. View at Scopus
  39. A. E. Johnston, P. R. Poulton, C. J. Dawson, and M. J. Crawley, Inputs of Nutrients and Lime for the Maintenance of Fertility of Grasslands Soils, Proc. No. 486, The International Fertiliser Society, York, UK, 2001.
  40. A. E. Johnston, “The value of long-term field experiments in agricultural, ecological, and environmental research,” Advances in Agronomy, vol. 59, no. C, pp. 291–333, 1997. View at Publisher · View at Google Scholar · View at Scopus
  41. A. E. Johnston and G. F. J. Milford, Potassium and Nitrogen Interactions in Crop Production, Proc. No. 615, The International Fertiliser Society, York, UK, 2007.
  42. C. J. Dawson, “Phosphate and potash - reconsidering their importance and use,” Journal of the Royal Agricultural Society of England, vol. 172, pp. 1–9, 2011.
  43. M. C. H. Mouat and P. Nes, “Effect of the interaction of nitrogen and phosphorus on the growth of ryegrass,” New Zealand Journal of Agricultural Research, no. 3, pp. 333–336, 1983.
  44. A. E. Johnston and J. K. Syers, Changes in Understanding the Behaviour of Soil and Fertiliser Phosphorus: Implications for Their Efficient Use in Agriculture, Proc. No. 589, The International Fertiliser Society, York, UK, 2006.