About this Journal Submit a Manuscript Table of Contents
Applied and Environmental Soil Science
Volume 2014 (2014), Article ID 359736, 8 pages
http://dx.doi.org/10.1155/2014/359736
Research Article

Silvopastoral Systems Enhance Soil Quality in Grasslands of Colombia

1CORPOICA Turipaná, Km. 13 vía Montería-Cereté, Córdoba, Colombia
2Universidad Nacional de Colombia, Calle 59 No. 63-20, 050034 Medellín, Colombia

Received 31 July 2013; Revised 16 November 2013; Accepted 1 December 2013; Published 22 January 2014

Academic Editor: Robert L. Bradley

Copyright © 2014 Judith Martínez et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Lamb, P. D. Erskine, and J. A. Parrotta, “Restoration of degraded tropical forest landscapes,” Science, vol. 310, no. 5754, pp. 1628–1632, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Herrero, P. K. Thornton, A. M. Notenbaert et al., “Smart investments in sustainable food production: revisiting mixed crop-livestock systems,” Science, vol. 327, no. 5967, pp. 822–825, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. C. A. McAlpine, A. Etter, P. M. Fearnside, L. Seabrook, and W. F. Laurance, “Increasing world consumption of beef as a driver of regional and global change: a call for policy action based on evidence from Queensland (Australia), Colombia and Brazil,” Global Environmental Change, vol. 19, no. 1, pp. 21–33, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. S. Cajas-Girón, M. Jones, and F. L. Sinclair, “Combining tree diversity and cattle on seasonally dry pastures in Colombia,” in Proceedings of the 2nd Congress of Animal Science, BAS, Yucatan, Mexico, 2002.
  5. S. E. Obalum, M. M. Buri, J. C. Nwite et al., “Soil degradation-induced decline in productivity of Sub-Saharan African soils: the prospects of looking downwards the lowlands with the Sawah ecotechnology,” Applied and Environmental Soil Science, vol. 2012, Article ID 673926, 10 pages, 2012. View at Publisher · View at Google Scholar
  6. J. Martinez, Litter production and decomposition in multistrata silvopastoral system and their effects on soil bio-organic properties in the Sinu river valley [Ph.D. dissertation], Universidad Nacional de Colombia, Medellin, Colombia, 2013.
  7. S. Mejia, S. Reza, P. Argel et al., “Alternativas de manejo de pasturas de Colosuana o kikuyina (Bothriochloa pertusa) en sistemas ganaderos del tropico bajo,” Informe Final, Corporacion Colombiana de Investigacion Agropecuaria—CORPOICA. Ministerio de Agricultura y Desarrollo Rural, Córdoba, Colombia, 2008.
  8. Y. S. Cajas-Giron and F. L. Sinclair, “Characterization of multistrata silvopastoral systems on seasonally dry pastures in the Caribbean Region of Colombia,” Agroforestry Systems, vol. 53, no. 2, pp. 215–225, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Lal, “Laws of sustainable soil management,” in Sustainable Agriculture, E. Lichtfouse, M. Navarrete, P. Debaeke, S. Veronique, and C. Alberola, Eds., pp. 9–12, Springer, Amsterdam, The Netherlands, 2009.
  10. M. F. Restrepo, C. P. Florez, N. W. Osorio, and J. D. León, “Passive and active restoration strategies to activate soil biogeochemical nutrient cycles in a degraded tropical dry land,” ISRN Soil Science, vol. 2013, Article ID 461984, 6 pages, 2013. View at Publisher · View at Google Scholar
  11. E. Murgueitio, Z. Calle, F. Uribe, A. Calle, and B. Solorio, “Native trees and shrubs for the productive rehabilitation of tropical cattle ranching lands,” Forest Ecology and Management, vol. 261, no. 10, pp. 1654–1663, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Sierra and P. Nygren, “Transfer of N fixed by a legume tree to the associated grass in a tropical silvopastoral system,” Soil Biology and Biochemistry, vol. 38, no. 7, pp. 1893–1903, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. M. E. Wedderburn and J. Carter, “Litter decomposition by four functional tree types for use in silvopastoral systems,” Soil Biology and Biochemistry, vol. 31, no. 3, pp. 455–461, 1999. View at Publisher · View at Google Scholar · View at Scopus
  14. J. H. Mcadam, A. R. Sibbald, Z. Teklehaimanot, and W. R. Eason, “Developing silvopastoral systems and their effects on diversity of fauna,” Agroforestry Systems, vol. 70, no. 1, pp. 81–89, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. U. Ilstedt, A. Malmer, E. Verbeeten, and D. Murdiyarso, “The effect of afforestation on water infiltration in the tropics: a systematic review and meta-analysis,” Forest Ecology and Management, vol. 251, no. 1-2, pp. 45–51, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Lemenih, M. Olsson, and E. Karltun, “Comparison of soil attributes under Cupressus lusitanica and Eucalyptus saligna established on abandoned farmlands with continuously cropped farmlands and natural forest in Ethiopia,” Forest Ecology and Management, vol. 195, no. 1-2, pp. 57–67, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. E. Barros, A. Neves, E. Blanchart, E. C. M. Fernandes, E. Wandelli, and P. Lavelle, “Development of the soil macrofauna community under silvopastoral and agrosilvicultural systems in Amazonia,” Pedobiologia, vol. 47, no. 3, pp. 273–280, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. G. Schroth and F. Sinclair, Trees Crops and Soil Fertility: Concepts and Research Methods, CABI, Wallingford, UK edition, 2003.
  19. P. Betancourt, J. Gonzalez, B. Figueroa, and F. Gonzalez, “Materia organica y caracterizacion de suelos en procesos de recuperacion con coberturas vegetativas en zonas templadas de México,” Terra, vol. 17, no. 2, pp. 139–148, 1999.
  20. M. R. Mosquera-Losada, E. Fernández-Núñez, and A. Rigueiro-Rodríguez, “Pasture, tree and soil evolution in silvopastoral systems of Atlantic Europe,” Forest Ecology and Management, vol. 232, no. 1–3, pp. 135–145, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. M. P. Eichhorn, P. Paris, F. Herzog et al., “Silvoarable systems in Europe—past, present and future prospects,” Agroforestry Systems, vol. 67, no. 1, pp. 29–50, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. H. R. Grau, N. I. Gasparri, and T. M. Aide, “Agriculture expansion and deforestation in seasonally dry forests of north-west Argentina,” Environmental Conservation, vol. 32, no. 2, pp. 140–148, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. B. Berg, “Litter decomposition and organic matter turnover in northern forest soils,” Forest Ecology and Management, vol. 133, no. 1-2, pp. 13–22, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Jose, “Agroforestry for conserving and enhancing biodiversity,” Agroforestry Systems, vol. 85, pp. 1–8, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. B. M. Kumar, “Litter dynamics in plantation and agroforestry systems of the tropics-a review of observations and methods,” in Ecological Basis of Agroforestry, D. R. Batish, R. V. Kohli, S. Jose, and H. P. Singh, Eds., pp. 181–216, CRC Press, Boca Raton, Fla, USA, 2008.
  26. L. R. Holdridge, Life Zone Ecology, Tropical Science Center, San José, Costa Rica, 1967.
  27. A. Calle, “What makes an early adopter? Transforming landscapes One farmer at a time,” Tropical Resources Bulletin, vol. 27, pp. 7–14, 2008.
  28. A. Calle, F. Montagnini, and A. F. Zuluaga, “Farmers' perceptions of silvopastoral system promotion in Quindio, Colombia,” Bois et Forets des Tropiques, vol. 300, pp. 79–94, 2009.
  29. M. Kononova, Soil Organic Matter, Pergamon, Oxford, UK, 1966.
  30. R. L. Westerman, Soil Testing and Plant Analysis, Soil Science Society of America, Madison, Wis, USA, 1990.
  31. P. L. Mafongoya, E. Kuntashula, and G. Sileshi, “Managing soil fertility and nutrient cycles through fertilizer trees in Southern Africa,” in Biological Approaches to Sustainable Soil Systems, N. Uphoff, Ed., pp. 273–289, CRC Press, Boca Raton, Fla, USA, 2006.
  32. E. M. Fernandes, E. Wandelli, R. Perin, and S. Garcia, “Restoring productivity to degraded pasture lands in the Amazon through agroforestry practices,” in Biological Approaches to Sustainable Soil Systems, N. Uphoff, Ed., pp. 305–322, CRC Press, Boca Raton, Fla, USA, 2006.
  33. R. V. Kohli, H. P. Singh, D. R. Batish, and S. Jose, “Ecological interactions in agroforestry: an overview,” in Ecological Basis of Agroforestry, D. R. Batish, R. V. Kohli, S. Jose, and H. P. Singh, Eds., pp. 3–14, CRC Press, Boca Raton, Fla, USA, 2008.
  34. S. Jose, “Managing native and non-native plants in agroforestry systems,” Agroforestry Systems, vol. 83, no. 2, pp. 101–105, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. G. Schroth and U. Krauss, “Biological soil fertility management for tree-crop agroforestry,” in Biological Approaches to Sustainable Soil Systems, N. Uphoff, Ed., pp. 291–303, CRC Press, Boca Raton, Fla, USA, 2006.
  36. S. Jose, S. C. Allen, and P. K. R. Nair, “Tree-crop interactions: lessons from temperate alley-cropping systems,” in Ecological Basis of Agroforestry, D. R. Batish, R. V. Kohli, S. Jose, and H. P. Singh, Eds., pp. 15–36, CRC Press, Boca Raton, Fla, USA, 2008.
  37. A. E. Lugo, E. Cuevas, and M. J. Sanchez, “Nutrients and mass in litter and top soil of ten tropical tree plantations,” Plant and Soil, vol. 125, no. 2, pp. 263–280, 1990. View at Publisher · View at Google Scholar · View at Scopus
  38. F. Montagnini, “Soil sustainability in agroforestry systems: experiences on impacts of trees on soil fertility from a humid tropical site,” in Ecological Basis of Agroforestry, D. R. Batish, R. Kumar, S. Jose, and H. P. Singh, Eds., pp. 239–249, CRC Press, Boca Raton, Fla, USA, 2008.
  39. R. Kershnar and F. Montagnini, “Leaf litter decomposition, litterfall, and effects of leaf mulches from mixed and monospecific plantations in Costa Rica,” Journal of Sustainable Forestry, vol. 7, no. 3-4, pp. 95–118, 1998. View at Scopus
  40. J. Velasco, J. Camargo, H. Andrade, and M. Ibrahim, Mejoramiento del suelo por Acacia mangium en un sistema silvopastoril con Brachiaria humidicola, CATIE—Turrialba, San José, Costa Rica, 1998.
  41. J. D. Leon, J. Castellanos, M. Casamitjana, N. W. Osorio, and J. C. Loaiza, “Alluvial gold-mining degraded soils reclamation using Acacia mangium plantations: an evaluation from biogeochemistry,” in Plantations Biodiversity, Carbon Sequestration and Restoration, R. Hai, Ed., pp. 155–176, Nova Science, New York, NY, USA, 2013.
  42. J. Castellanos-Barliza and J. D. Leon, “Litter decomposition and nutrient release in Acacia mangium plantations established on degraded soils of Colombia,” Revista de Biología Tropical, vol. 59, no. 1, pp. 113–128, 2011. View at Scopus
  43. A. M. Rodrigues, U. Cecato, N. M. Fukumoto, S. Galbeiro, G. T. Dos Santos, and L. M. Barbero, “Macronutrient concentrations and amounts in the animal excreta on mombaça grass pasture, fertilized with different phosphorus sources,” Revista Brasileira de Zootecnia, vol. 37, no. 6, pp. 990–997, 2008. View at Scopus
  44. S. Van Ausdal, “Pasture, profit, and power: an environmental history of cattle ranching in Colombia, 1850–1950,” Geoforum, vol. 40, no. 5, pp. 707–719, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. S. A. Barber, Soil Nutrient Bioavailability. A Mechanistic Approach, John Wiley & Sons, New York, NY, USA, 1995.
  46. J. A. Parrotta, “Productivity, nutrient cycling, and succession in single- and mixed-species plantations of Casuarina equisetifolia, Eucalyptus robusta, and Leucaena leucocephala in Puerto Rico,” Forest Ecology and Management, vol. 124, no. 1, pp. 45–77, 1999. View at Publisher · View at Google Scholar · View at Scopus
  47. D. Celentano, R. A. Zahawi, B. Finegan, R. Ostertag, R. J. Cole, and K. D. Holl, “Litterfall dynamics under different tropical forest restoration strategies in Costa Rica,” Biotropica, vol. 43, no. 3, pp. 279–287, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. F. J. Stevenson, Humus Chemistry. Genesis, Composition, Reactions, John Wiley & Sons, New York, NY, USA, 2nd edition, 1994.
  49. B. M. Kumar, S. Jacob George, V. Jamaludheen, and T. K. Suresh, “Comparison of biomass production, tree allometry and nutrient use efficiency of multipurpose trees grown in woodlot and silvopastoral experiments in Kerala, India,” Forest Ecology and Management, vol. 112, no. 1-2, pp. 145–163, 1998. View at Publisher · View at Google Scholar · View at Scopus
  50. E. G. Gregorich and H. H. Janzen, “Microbially mediated processes: decomposition,” in Handbook of Soil Science, M. Summer, Ed., pp. 106–119, CRC Press, Boca Raton, Fla, USA, 1998.
  51. S. Sundaramoorthy, M. S. Kumar, and S. M. Singh, “Soil biology in traditional agroforestry systems of the Indian Desert,” in Desert Plants, Biology and Biotechnology, K. G. Ramawat, Ed., pp. 92–113, New York, NY, USA, 2010.
  52. K. Kumar and K. M. Goh, “Crop residues and management practices: effects on soil quality, soil nitrogen dynamics, crop yield, and nitrogen recovery,” Advances in Agronomy, vol. 68, pp. 197–319, 1999. View at Publisher · View at Google Scholar · View at Scopus
  53. J. Leigh, A. Hodge, and A. H. Fitter, “Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material,” New Phytologist, vol. 181, no. 1, pp. 199–207, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. Instituto Colombiano Agropecuario (ICA), Fertilizacion en Diversos Cultivos, ICA, Bogota, Colombia, 1992.
  55. M. Dulormne, J. Sierra, P. Nygren, and P. Cruz, “Nitrogen-fixation dynamics in a cut-and-carry silvopastoral system in the subhumid conditions of Guadeloupe, French Antilles,” Agroforestry Systems, vol. 59, no. 2, pp. 121–129, 2003. View at Publisher · View at Google Scholar · View at Scopus
  56. N. W. Osorio, Soil Nutrient Management in the Tropics, Universidad Nacional de Colombia, Medellin, Colombia, 2013.
  57. N. W. Osorio and J. D. Leon, “Roles of arbuscular mycorrizal association in plant nutrition and growth of tropical forestry and agroforestry in degraded soil reclamation,” in Plantations Biodiversity, Carbon Sequestration and Restoration, R. Hai, Ed., pp. 127–154, Nova Science, New York, NY, USA, 2013.
  58. N. W. Osorio and M. Habte, “Synergistic effect of a phosphate-solubilizing fungus and an arbuscular mycorrhizal fungus on leucaena seedlings in an Oxisol fertilized with rock phosphate,” Botany, vol. 91, pp. 274–281, 2013.
  59. Y. J. Li, Z. L. Liu, X. Y. He, and C. J. Tian, “Nitrogen metabolism and translocation in arbuscular mycorrhizal symbiote and its ecological implications,” Chinese Journal of Applied Ecology, vol. 24, pp. 861–868, 2013.
  60. S. Zingore, R. Chikowo, G. Nyamadzawo, P. Nyamugafata, and P. L. Mafongoya, “Developments in the research of the potential of agroforestry for sustaining soil fertility in Zimbawe,” in Ecological Basis of Agroforestry, D. R. Batish, R. V. Kohli, S. Jose, and H. P. Singh, Eds., pp. 217–237, CRC Press, Boca Raton, Fla, USA, 2008.