About this Journal Submit a Manuscript Table of Contents
Applied and Environmental Soil Science
Volume 2014 (2014), Article ID 369037, 8 pages
http://dx.doi.org/10.1155/2014/369037
Research Article

Clay and Soil Photolysis of the Pesticides Mesotrione and Metsulfuron Methyl

1Institut de Chimie de Clermont-Ferrand, Clermont Université and Université Blaise Pascal, Equipe Photochimie, BP 80026, 63171 Clermont Ferrand, France
2Clermont Université, ENSCCF, BP 10448, 63171 Clermont Ferrand, France
3Laboratoire GTVD, Faculté des Sciences, Université de Lomé, 05 BP 796, Lomé, Togo

Received 31 July 2013; Revised 21 November 2013; Accepted 5 December 2013; Published 29 January 2014

Academic Editor: Teodoro Miano

Copyright © 2014 Marie Siampiringue et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Centi and S. Perathoner, “Remediation of water contamination using catalytic technologies,” Applied Catalysis B, vol. 41, no. 1-2, pp. 15–29, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Chiron, A. Fernandez-Alba, A. Rodriguez, and E. Garcia-Calvo, “Pesticide chemical oxidation: state-of-the-art,” Water Research, vol. 34, no. 2, pp. 366–377, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. H. D. Burrows, M. Canle L, J. A. Santaballa, and S. Steenken, “Reaction pathways and mechanisms of photodegradation of pesticides,” Journal of Photochemistry and Photobiology B, vol. 67, no. 2, pp. 71–108, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. E. S. da Silva, P. Wong-Wah-Chung, H. D. Burrows, and M. Sarakha, “Photochemical degradation of the plant growth regulator 2-(1-Naphthyl) acetamide in aqueous solution upon UV irradiation,” Journal of Photochemistry and Photobiology, vol. 89, no. 3, pp. 560–570, 2013.
  5. L. M. Canle, M. I. Fernandez, C. Martinez, and J. A. Santaballa, “Photochemistry for pollution abatement,” Pure and Applied Chemistry, vol. 85, no. 7, pp. 1437–1449, 2013.
  6. O. Hutzinger, “Environmental photochemistry,” in The Handbook of Environmental Chemistry—Part L, vol. 2, pp. 180–215, Springer, 1999.
  7. O. Legrini, E. Oliveros, and A. M. Braun, “Photochemical processes for water treatment,” Chemical Reviews, vol. 93, no. 2, pp. 671–698, 1993. View at Scopus
  8. K. H. Chan and W. Chu, “Effect of humic acid on the photolysis of the pesticide atrazine in a surfactant-aided soil-washing system in acidic condition,” Water Research, vol. 39, no. 10, pp. 2154–2166, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Gohre, R. Scholl, and G. C. Miller, “Singlet oxygen reactions on irradiated soil surfaces,” Environmental Science and Technology, vol. 20, no. 9, pp. 934–938, 1986. View at Scopus
  10. V. R. Hebert and G. C. Miller, “Depth dependence of direct and indirect photolysis on soil surfaces,” Journal of Agricultural and Food Chemistry, vol. 38, no. 3, pp. 913–918, 1990. View at Scopus
  11. C. Martinez, S. Vilarino, M. I. Fernandez, J. Faria, L. M. Canle, and J. A. Santaballa, “Mechanism of degradation of ketoprofen by heterogeneous photocatalysis in aqueous solution,” Applied Catalysis B, vol. 142, pp. 633–646, 2013.
  12. M. Piecha, M. Sarakha, and P. Trebše, “Photocatalytic degradation of cholesterol-lowering statin drugs by TiO2-based catalyst. Kinetics, analytical studies and toxicity evaluation,” Journal of Photochemistry and Photobiology A, vol. 213, no. 1, pp. 61–69, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. S. A. Mabury and D. G. Crosby, “The relationship of hydroxyl reactivity to pesticide persistence,” in Aquatic and Surface Photochemistry, G. R. Helz, R. G. Zepp, and D. G. Crosby, Eds., chapter 10, Lewis Publishers, Chelsea, Mich, USA, 1994.
  14. K. Gohre and G. C. Miller, “Singlet oxygen generation on soil surfaces,” Journal of Agricultural and Food Chemistry, vol. 31, no. 5, pp. 1104–1108, 1983. View at Scopus
  15. C. A. Smith, Y. Iwata, and F. A. Gunther, “Conversion and disappearance of methidathion on thin layers of dry soil,” Journal of Agricultural and Food Chemistry, vol. 26, no. 4, pp. 959–962, 1978. View at Scopus
  16. G. P. Nilles and M. J. Zabik, “Photochemistry of bioactive compounds. Multiphase photodegradation spectral analysis of basagran,” Journal of Agricultural and Food Chemistry, vol. 23, no. 3, pp. 410–415, 1975. View at Scopus
  17. C. Gonçalves, A. Dimou, V. Sakkas, M. F. Alpendurada, and T. A. Albanis, “Photolytic degradation of quinalphos in natural waters and on soil matrices under simulated solar irradiation,” Chemosphere, vol. 64, no. 8, pp. 1375–1382, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. G. Mitchell, D. W. Bartlett, T. E. M. Fraser, et al., “Mesotrione: a new selective herbicide for nuse in maize,” Pest Management Science, vol. 57, pp. 120–128, 2001.
  19. A. T. Halle and C. Richard, “Simulated solar light irradiation of mesotrione in natural waters,” Environmental Science and Technology, vol. 40, no. 12, pp. 3842–3847, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. H. M. Brown, “Mode of action, crop selectivity, and soil relations of the sulfonylurea herbicides,” Pesticide Science, vol. 29, no. 3, pp. 263–281, 1990. View at Scopus
  21. M. E. Beyer, H. M. Brown, and M. J. Duffy, “Sulfonylurea herbicide soil relations,” Proceedings of the British Crop Protection Conference, vol. 2, pp. 531–540, 1987.
  22. Q. Ye, J. Sun, and J. Wu, “Causes of phytotoxicity of metsulfuron-methyl bound residues in soil,” Environmental Pollution, vol. 126, no. 3, pp. 417–423, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. R. Paul and S. B. Singh, “Phototransformation of herbicide metsulfuron methyl,” Journal of Environmental Science and Health B, vol. 43, no. 6, pp. 506–512, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. M. E. Balmer, K.-U. Goss, and R. P. Schwarzenbach, “Photolytic transformation of organic pollutants on soil surfaces—an experimental approach,” Environmental Science and Technology, vol. 34, no. 7, pp. 1240–1245, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Ciani, K.-U. Goss, and R. P. Schwarzenbach, “Photodegradation of organic compounds adsorbed in porous mineral layers: determination of quantum yields,” Environmental Science and Technology, vol. 39, no. 17, pp. 6712–6720, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. D. Dulin and T. Mill, “Development and evaluation of sunlight actinometers,” Environmental Science and Technology, vol. 16, no. 11, pp. 815–820, 1982. View at Scopus
  27. L. Tajeddine, M. Nemmaoui, H. Mountacer, A. Dahchour, and M. Sarakha, “Photodegradation of fenamiphos on the surface of clays and soils,” Environmental Chemistry Letters, vol. 8, no. 2, pp. 123–128, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Menager and M. Sarakha, “Simulated solar light phototransformation of organophosphorus azinphos methyl at the surface of clays and goethite,” Environmental Science & Technology, vol. 47, pp. 765–772, 2013.
  29. S. Rafqah, A. Aamili, S. Nelieu et al., “Kinetics and mechanism of the degradation of the pesticide metsulfuron methyl induced by excitation of iron(III) aqua complexes in aqueous solutions: steady state and transient absorption spectroscopy studies,” Photochemical and Photobiological Sciences, vol. 3, no. 3, pp. 296–304, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. H.-J. Benkelberg and P. Warneck, “Photodecomposition of iron(III) hydroxo and sulfato complexes in aqueous solution: wavelength dependence of OH and SO4 quantum yields,” Journal of Physical Chemistry, vol. 99, no. 14, pp. 5214–5221, 1995. View at Scopus
  31. S. Rafqah, G. Mailhot, and M. Sarakha, “Highly efficient photodegradation of the pesticide metolcarb induced by Fe complexes,” Environmental Chemistry Letters, vol. 4, no. 4, pp. 213–217, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. G. V. Buxton, C. L. Greenstock, W. P. Helamn, and A. B. Ross, “Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O) in aqueous solution,” Journal of Physical and Chemical Reference Data Reprints, vol. 17, no. 2, pp. 513–886, 1988.
  33. Q. Ye, J. Sun, and J. Wu, “Causes of phytotoxicity of metsulfuron-methyl bound residues in soil,” Environmental Pollution, vol. 126, no. 3, pp. 417–423, 2003. View at Publisher · View at Google Scholar · View at Scopus