About this Journal Submit a Manuscript Table of Contents
Applied and Environmental Soil Science
Volume 2014 (2014), Article ID 603132, 10 pages
http://dx.doi.org/10.1155/2014/603132
Research Article

The Sloping Mire Soil-Landscape of Southern Ecuador: Influence of Predictor Resolution and Model Tuning on Random Forest Predictions

1Department of Geosciences/Soil Physics Division, University of Bayreuth, Universitaetsstraße 30, 95447 Bayreuth, Germany
2ETH Zürich, Environmental Natural and Social Sciences, Universitaetsstraße 22, 8092 Zürich, Switzerland

Received 15 July 2013; Revised 12 October 2013; Accepted 28 October 2013; Published 5 February 2014

Academic Editor: Robert L. Bradley

Copyright © 2014 Mareike Ließ et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. R. Townsend, P. M. Vitousek, and S. E. Trumbore, “Soil organic matter dynamics along gradients in temperature and land use on the island of Hawaii,” Ecology, vol. 76, no. 3, pp. 721–733, 1995. View at Scopus
  2. W. Wilcke, S. Yasin, A. Schmitt, C. Valarezo, and W. Zech, “Soils along the altitudinal transect and in catchments,” in Gradients in a Tropical Mountain Ecosystem of Ecuador, E. Beck, J. Bendix, I. Kottke, F. Makeschin, and R. Mosandl, Eds., Chapter 9, pp. 75–85, Springer, Berlin, Germany, 2008.
  3. W. I. J. Dieleman, M. Venter, A. Ramachandra, A. K. Krockenberger, and M. I. Bird, “Soil carbon stocks vary predictably with altitude in tropical forests: implications for soil carbon storage,” Geoderma, vol. 204-205, pp. 59–67, 2013.
  4. M. Liess, B. Glaser, and B. Huwe, “Digital soil mapping in southern Ecuador,” Erdkunde, vol. 63, no. 4, pp. 309–319, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Ließ, B. Glaser, and B. Huwe, “Uncertainty in the spatial prediction of soil texture: comparison of regression tree and Random Forest models,” Geoderma, vol. 170, pp. 70–79, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. F. C. Bauer, Water flow paths of an undisturbed and landslide affected mature montane rainforest in south Ecuador [Ph.D. thesis], University of Bayreuth, Bayreuth, Germany, 2010, http://opus.ub.uni-bayreuth.de/volltexte/2011/761/.
  7. FAO and IUSS Working Group WRB, “World Reference Base for Soil Resources 2006, first update 2007,” World Soil Resources Reports 103, 2007.
  8. G. Milne, “Normal erosion as a factor in soil profile development,” Nature, vol. 138, no. 3491, pp. 548–549, 1936. View at Scopus
  9. D. A. Wysocki, P. J. Schoeneberger, and H. E. LaGarry, “Geomorphology of soil landscapes,” in Handbook of Soil Science, M. Sumner, Ed., pp. E1–E39, CRC Press, Boca Raton, Fla, USA, 2000.
  10. P. H. Walker, G. F. Hall, and R. Protz, “Relation between landform parameters and soil properties,” Soil Science Society of America Journal, vol. 32, pp. 101–104, 1968.
  11. J. A. Thompson, J. C. Bell, and C. A. Butler, “Quantitative soil-landscape modeling for estimating the areal extent of hydromorphic soils,” Soil Science Society of America Journal, vol. 61, no. 3, pp. 971–980, 1997. View at Scopus
  12. V. Chaplot, C. Walter, and P. Curmi, “Improving soil hydromorphy prediction according to DEM resolution and available pedological data,” Geoderma, vol. 97, no. 3-4, pp. 405–422, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. F. R. Troeh, “Landform parameters correlated to soil drainage,” Soil Science Society of America Journal, vol. 28, pp. 808–812, 1964.
  14. W. Peng, D. B. Wheeler, J. C. Bell, and M. G. Krusemark, “Delineating patterns of soil drainage class on bare soils using remote sensing analyses,” Geoderma, vol. 115, no. 3-4, pp. 261–279, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. I. D. Moore, P. E. Gessler, G. A. Nielsen, and G. A. Peterson, “Soil attribute prediction using terrain analysis,” Soil Science Society of America Journal, vol. 57, no. 2, pp. 443–452, 1993. View at Scopus
  16. S. J. Park, K. K. McSweeney, and B. B. Lowery, “Identification of the spatial distribution of soils using a process-based terrain characterization,” Geoderma, vol. 103, no. 3-4, pp. 249–272, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. T. F. A. Bishop and B. Minasny, “Digital soil-terrain modeling: the predictive potential and uncertainty,” in Environmental Soil-Landscape Modeling, S. Grunwald, Ed., pp. 185–213, CRC Press, Boca Raton, Fla, USA, 2006.
  18. R. Kohavi and G. H. John, “Wrappers for feature subset selection,” Artificial Intelligence, vol. 97, no. 1-2, pp. 273–324, 1997. View at Scopus
  19. M. B. Kursa and W. R. Rudnicki, “Feature selection with the boruta package,” Journal of Statistical Software, vol. 36, no. 11, pp. 1–13, 2010. View at Scopus
  20. C. Leuschner, G. Moser, C. Bertsch, M. Röderstein, and D. Hertel, “Large altitudinal increase in tree root/shoot ratio in tropical mountain forests of Ecuador,” Basic and Applied Ecology, vol. 8, no. 3, pp. 219–230, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. Ließ, M, B. Glaser, and B. Huwe, “Soil-landscape modelling—reference soil group probability prediction in southern Ecuador,” in Principles, Application and Assessment in Soil Science, E. B. Özkaraova Güngör, Ed., pp. 241–256, InTech Open Access, 2011.
  22. M. Schrumpf, G. Guggenberger, C. Valarezo, and W. Zech, “Tropical montane rain forest soils. Development and nutrient status along an altitudinal gradient in the South Ecuadorian Andes,” Erde, vol. 132, no. 1, pp. 43–59, 2001. View at Scopus
  23. R. Rollenbeck, “Variability of precipitation in the Reserva Biológica San Francisco/Southern Ecuador,” Lyonia, vol. 9, no. 1, pp. 43–51, 2006.
  24. O. Planchon and F. Darboux, “A fast, simple and versatile algorithm to fill the depressions of digital elevation models,” Catena, vol. 46, no. 2-3, pp. 159–176, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. L. W. Zevenbergen and C. R. Thorne, “Quantitative analysis of land surface topography,” Earth Surface Processes & Landforms, vol. 12, no. 1, pp. 47–56, 1987. View at Scopus
  26. R. Köthe and F. Lehmeier, SARA-System Zur Automatischen Relief-Analyse, User Manual, Deptartement of Geography, University of Goettingen, 2nd edition, 1996.
  27. S. J. Riley, S. D. De Gloria, and R. Elliot, “A terrain ruggedness that quantifies topographic -heterogeneity,” Intermountain Journal of Science, vol. 5, no. 1-4, pp. 23–27, 1999.
  28. N. L. Lea, “An aspect driven kinematic routing algorithm,” in Overland Flow Hydraulics and Erosion Mechanics, A. J. Parsons and A. D. Abrahams, Eds., pp. 393–3407, London, UK, 1992.
  29. J. Böhner, R. Köthe, O. Conrad, J. Gross, A. Ringeler, and T. Selige, “Soil regionalisation by means of terrain analysis and process parameterisation,” in Soil Classification 2001, E. Micheli, F. Nachtergaele, and L. Montanarella, Eds., Research Report No. 7, EUR, 20398 EN, pp. 213–222, European Bureau, Luxembourg, 2002.
  30. J. Böhner and O. Antonic, “Land surface parameters specific to topo-climatology,” in Geomorphometry—Concepts, Software, Applications, T. Hengl and H. I. Reuter, Eds., pp. 195–226, Elsevier, Amsterdam, The Netherlands, 2009.
  31. T. R. Oke, Boundary Layer Climates, Taylor & Francis, London, UK, 1988.
  32. J. P. Wilson and J. C. Gallant, Eds., Terrain Analysis—Principles and Applications, John Wiley & Sons, New York, NY, USA, 2000.
  33. V. Olaya, “A gentle introduction to SAGA GIS. Edition 1. 1,” 2004, http://sourceforge.net/projects/saga-gis/files/.
  34. J. Böhner, K. R. McCloy, and J. Strobl, SAGA—Analysis and Modelling Application. Göttinger Geographische Abhandlungen, vol. 115, Geographisches Institut der Universität Göttingen, 2006.
  35. V. Cimmery, “User guide for SAGA (version 2. 0),” 2007, http://sourceforge.net/projects/saga-gis/files.
  36. A. Fries, R. Rollenbeck, D. Göttlicher et al., “Thermal structure of a megadiverse Andean mountain ecosystem in southern Ecuador and its regionalization,” Erdkunde, vol. 63, no. 4, pp. 321–336, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. J. Homeier, H. Dalitz, and S. W. Breckle, “Waldstruktur und Baumarten im montanen Regenwald der Estación Científica San Franscisco in Südecuador,” Berichte der Reinhold-Tüxen-Gesellschaft, vol. 14, pp. 109–118, 2002.
  38. M. Oesker, H. Dalitz, S. Günter, and S. Matezki, “Spatial heterogeneity patterns—a comparison between gorges and ridges in the upper part of an evergreen lower montane forest,” in Gradients in a Tropical Mountain Ecosystem of Ecuador, E. Beck, J. Bendix, I. Kottke, F. Makeschin, and R. Mosandl, Eds., Chapter 18, pp. 267–274, Springer, Berlin, Germany, 2008.
  39. T. Behrens, A.-X. Zhu, K. Schmidt, and T. Scholten, “Multi-scale digital terrain analysis and feature selection for digital soil mapping,” Geoderma, vol. 155, no. 3-4, pp. 175–185, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Ließ, Soil-landscape modelling in an Andean mountain forest region in southern Ecuador [Ph.D. thesis], University of Bayreuth, Bayreuth, Germany, 2011.
  41. P. Lagacherie and S. Holmes, “Addressing geographical data errors in a classification tree for soil unit prediction,” International Journal of Geographical Information Science, vol. 11, no. 2, pp. 183–198, 1997. View at Scopus
  42. A. B. McBratney, I. O. A. Odeh, T. F. A. Bishop, M. S. Dunbar, and T. M. Shatar, “An overview of pedometric techniques for use in soil survey,” Geoderma, vol. 97, no. 3-4, pp. 293–327, 2000. View at Publisher · View at Google Scholar · View at Scopus
  43. C. J. Moran and E. N. Bui, “Spatial data mining for enhanced soil map modelling,” International Journal of Geographical Information Science, vol. 16, no. 6, pp. 533–549, 2002. View at Publisher · View at Google Scholar · View at Scopus
  44. C. Strobl, T. Hothorn, and A. Zeileis, “Party on! A new conditional variable importance measure for Random Forests available in the party package. Technical Report Number 050, Department of Statistics, University of Munich,” 2009, http://www.stat.uni-muenchen.de.
  45. L. Breiman, J. H. Friedmann, R. A. Olshen, and C. J. Stone, Classification and Regression Trees, CRC Press, Wadsworth, Ohio, USA, 1984.
  46. L. Breiman, “Technical Report for Version 3,” 2001, http://oz.berkeley.edu/users/breiman/randomforest2001.pdf.
  47. W. Rudnicki and B. Kursa, “Boruta—a tool for finding significant attributes in information systems. CRAN Reference Manual,” 2012, http://cran.r-project.org/web/packages/Boruta/Boruta.pdf.
  48. M. Ließ, B. Glaser, and B. Huwe, “Making use of the World Reference Base diagnostic horizons for the systematic description of the soil continuum—application to the tropical mountain soil-landscape of southern Ecuador,” Catena, vol. 97, pp. 20–30, 2012.
  49. E. A. Schuur and P. A. Matson, “Net primary productivity and nutrient cycling across a mesic to wet precipitation gradient in Hawaiian montane forest,” Oecologia, vol. 128, no. 3, pp. 431–442, 2001. View at Publisher · View at Google Scholar · View at Scopus
  50. L. Roman, F. N. Scatena, and L. A. Bruijnzeel, “Global and local variations in tropical montane cloud forest soils,” in Tropical Montane Cloud Forests: Science for Conservation and Management, L. A. Bruijnzeel, F. N. Scatena, and L. S. Hamilton, Eds., pp. 200–226, Cambridge University Press, 2010.
  51. P. Campling, A. Gobin, and J. Feyen, “Logistic modeling to spatially predict the probability of soil drainage classes,” Soil Science Society of America Journal, vol. 66, no. 4, pp. 1390–1401, 2002. View at Scopus
  52. M. Ließ, B. Glaser, and B. Huwe, “Functional soil-landscape modelling to estimate slope stability in a steep Andean mountain forest region,” Geomorphology, vol. 132, no. 3-4, pp. 287–299, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. S. J. Park and P. L. G. Vlek, “Environmental correlation of three-dimensional soil spatial variability: a comparison of three adaptive techniques,” Geoderma, vol. 109, no. 1-2, pp. 117–140, 2002. View at Publisher · View at Google Scholar · View at Scopus
  54. H. Joosten and J. Clarke, “Wise use of mires and peatlands—Background and principles—Including a framework for decision making. International Mire Conservation Group and International Peat Society,” 2002, http://www.gret-perg.ulaval.ca.
  55. Bayerisches Landesamt für Umweltschutz, Moorentwicklungskonzept Bayern (MEK)—Moortypen in Bayern, Projektgruppe Landschaftsentwicklung + Artenschutz, Kessler Verlagsdruckerei, Bobingen, Germany, 2005.
  56. R. A. Chimner and J. M. Karlberg, “Long-term carbon accumulation in two tropical mountain peatlands, Andes Mountains, Ecuador. Mires and Peat, 3/ article 4, 1–10,” 2008, http://www.mires-and-peat.net.
  57. J. Benner, P. M. Vitousek, and R. Ostertag, “Nutrient cycling and nutrient limitation in tropical montane cloud forests,” in Tropical Montane Cloud Forests, L. A. Bruijnzeel, F. N. Scatena, and L. S. Hamilton, Eds., International Hydrology Series, pp. 90–100, Cambridge University Press, Cambridge, UK, 2010.