About this Journal Submit a Manuscript Table of Contents
Advances in Fuzzy Systems
Volume 2012 (2012), Article ID 327861, 10 pages
http://dx.doi.org/10.1155/2012/327861
Research Article

Artificial Neural Network-Statistical Approach for PET Volume Analysis and Classification

1Department of Electronic and Computer Engineering, School of Engineering and Design, Brunel University, Uxbridge UB83PH, UK
2Nanotechnology and Integrated BioEngineering Centre, University of Ulster, Newtownabbey BT37OQB, UK
3Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva, Switzerland
4Geneva Neuroscience Center, Geneva University, CH-1205 Geneva, Switzerland
5Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands

Received 14 September 2011; Accepted 12 January 2012

Academic Editor: Jiann-Shing Shieh

Copyright © 2012 Mhd Saeed Sharif et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Zaidi and I. El Naqa, “PET-guided delineation of radiation therapy treatment volumes: a survey of image segmentation techniques,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 37, no. 11, pp. 2165–2187, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. H. Zaidi, M. Diaz-Gomez, A. Boudraa, and D. O. Slosman, “Fuzzy clustering-based segmented attenuation correction in whole-body PET imaging,” Physics in Medicine and Biology, vol. 47, no. 7, pp. 1143–1160, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. I. J. Kalet and M. M. Austin-Seymour, “Use of medical imagery in the delivery and planning of radiation therapy,” Journal of the American Medical Informatics Association, vol. 4, no. 5, pp. 327–339, 1997. View at Scopus
  4. D. W. G. Montgomery and A. Amira, “Automated multiscale segmentation of oncological cerebral MR image volumes,” in Proceedings of the IEEE International Conference on Computer Systems and Information Technology, 2005.
  5. D. Delbeke and W. H. Martin, “Positron emission tomography imaging in oncology,” Radiologic Clinics of North America, vol. 39, no. 5, pp. 883–917, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. D. A. Mankoff, M. Muzi, and H. Zaidi, “Quantitative analysis in nuclear oncologic imaging,” in Quantitative Analysis of Nuclear Medicine Images, H. Zaidi, Ed., pp. 494–536, Springer, New York, NY, USA, 2006.
  7. M. Aristophanous, B. C. Penney, and C. A. Pelizzari, “The development and testing of a digital PET phantom for the evaluation of tumor volume segmentation techniques,” Medical Physics, vol. 35, no. 7, pp. 3331–3342, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Vees, S. Senthamizhchelvan, R. Miralbell, D. C. Weber, O. Ratib, and H. Zaidi, “Assessment of various strategies for 18F-FET PET-guided delineation of target volumes in high-grade glioma patients,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 36, no. 2, pp. 182–193, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Basu, “Selecting the optimal image segmentation strategy in the era of multitracer multimodality imaging: a critical step for image-guided radiation therapy,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 36, no. 2, pp. 180–181, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. G. F. Luger, Artificial Intelligence: Structures and Strategies for Complex Problem Solving, Pearson Education, 2009.
  11. Y. Zhengchun and L. Hongji, “Face detection based on SCNN and wavelet invariant moment in color image,” in Proceedings of the International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR '07), pp. 783–787, November 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Sun and S. Wu, “Handwritten Chinese character recognition based on supervised competitive learning neural network and block-based relative fuzzy feature extraction,” in Applications of Neural Networks and Machine Learning in Image Processing IX, Proceedings of SPIE, pp. 65–70, January 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Joo, W. K. Moon, and H. C. Kim, “Computer-aidied diagnosis of solid breast nodules on ultrasound with digital image processing and artificial neural network,” in Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC '04), pp. 1397–1400, September 2004. View at Scopus
  14. S. G. Mougiakakou, I. Valavanis, K. S. Nikita, A. Nikita, and D. Kelekis, “Characterization of CT liver lesions based on texture features and a multiple neural network classification scheme,” in Proceddings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1287–1290, September 2003. View at Scopus
  15. W. E. Reddick, J. O. Glass, E. N. Cook, T. David Elkin, and R. J. Deaton, “Automated segmentation and classification of multispectral magnetic resonance images of brain using artificial neural networks,” IEEE Transactions on Medical Imaging, vol. 16, no. 6, pp. 911–918, 1997. View at Scopus
  16. C. C. Reyes-Aldasoro and A. L. Aldeco, “Image segmentation and compression using neural networks,” in Advances in Artificial Perception and Robotics (CIMAT '00), October 2000.
  17. K. Suzuki, H. Abe, H. MacMahon, and K. Doi, “Image-processing technique for suppressing ribs in chest radiographs by means of massive training artificial neural network (MTANN),” IEEE Transactions on Medical Imaging, vol. 25, no. 4, pp. 406–416, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Halt, C. C. Le Rest, A. Turzo, C. Roux, and D. Visvikis, “A fuzzy locally adaptive Bayesian segmentation approach for volume determination in PET,” IEEE Transactions on Medical Imaging, vol. 28, no. 6, pp. 881–893, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Belhassen and H. Zaidi, “A novel fuzzy C-means algorithm for unsupervised heterogeneous tumor quantification in PET,” Medical Physics, vol. 37, no. 3, pp. 1309–1324, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. Li and Z. Chi, “MR brain image segmentation based on self-organizing map network,” International Journal of Information Technology, vol. 11, no. 8, 2005.
  21. M. S. Sharif, A. Amira, and H. Zaidi, “3D oncological PET volume analysis using CNN and LVQNN,” in Proceedings of IEEE International Symposium on Circuits and Systems: Nano-Bio Circuit Fabrics and Systems (ISCAS '10), pp. 1783–1786, June 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Collet and F. Murtagh, “Multiband segmentation based on a hierarchical Markov model,” Pattern Recognition, vol. 37, no. 12, pp. 2337–2347, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. D. L. Weakliem, “A critique of the Bayesian information criterion for model selection,” Sociological Methods and Research, vol. 27, no. 3, pp. 359–397, 1999. View at Scopus
  24. C. T. Volinsky and A. E. Raftery, “Bayesian information criterion for censored survival models,” Biometrics, vol. 56, no. 1, pp. 256–262, 2000. View at Scopus
  25. J. T. Bushberg, et al., The Essential Physics of Medical Imaging, Lippincott Williams and Wilkins, Philadelphia, Pa, USA, 2006.
  26. G. Dreyfus, Neural Networks Methodology and Applications, Springer, Berlin, Germany, 2005.
  27. B. Curry and P. H. Morgan, “Evaluating Kohonen's learning rule: an approach through genetic algorithms,” European Journal of Operational Research, vol. 154, no. 1, pp. 191–205, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Clippingdale and R. Wilson, “Self-similar neural networks based on a Kohonen learning rule,” Neural Networks, vol. 9, no. 5, pp. 747–763, 1996. View at Publisher · View at Google Scholar · View at Scopus
  29. M. A. Arbib, The Handbook of Brain Theory and Neural Networks, Massachusetts Institute of Technology, 2003.
  30. M. Swiercz, J. Kochanowicz, J. Weigele et al., “Learning vector quantization neural networks improve accuracy of transcranial color-coded duplex sonography in detection of middle cerebral artery spasm—preliminary report,” Neuroinformatics, vol. 6, no. 4, pp. 279–290, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. P. Somervuo and T. Kohonen, “Self-organizing maps and learning vector quantization forfeature sequences,” Neural Processing Letters, vol. 10, no. 2, pp. 151–159, 1999. View at Scopus
  32. C. Jonsson, R. Odh, P. O. Schnell, and S. A. Larsson, “A comparison of the imaging properties of a 3- and 4-ring biograph PET scanner using a novel extended NEMA phantom,” in Proceedings of IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS-MIC '07), pp. 2865–2867, November 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. M. D. R. Thomas, D. L. Bailey, and L. Livieratos, “A dual modality approach to quantitative quality control in emission tomography,” Physics in Medicine and Biology, vol. 50, no. 15, pp. N187–N194, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. H. Herzog, L. Tellmann, C. Hocke, U. Pietrzyk, M. E. Casey, and T. Kawert, “NEMA NU2-2001 guided performance evaluation of four siemens ECAT PET scanners,” IEEE Transactions on Nuclear Science, vol. 51, no. 5, pp. 2662–2669, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. H. Bergmann, G. Dobrozemsky, G. Minear, R. Nicoletti, and M. Samal, “An inter-laboratory comparison study of image quality of PET scanners using the NEMA NU 2-2001 procedure for assessment of image quality,” Physics in Medicine and Biology, vol. 50, no. 10, pp. 2193–2207, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. J. M. Wilson and T. G. Turkington, “Multisphere phantom and analysis algorithm for PET image quality assessment,” Physics in Medicine and Biology, vol. 53, no. 12, pp. 3267–3278, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. H. Zaidi, F. Schoenahl, and O. Ratib, “Geneva PET/CT facility: design considerations and performance characteristics of two commercial (biograph 16/64) scanners,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 34, supplement 2, p. S166, 2007.
  38. M. S. Sharif, M. Abbod, A. Amira, and H. Zaidi, “Artificial neural network-based system for PET volume segmentation,” International Journal of Biomedical Imaging, vol. 2010, Article ID 105610, 11 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Vuk and T. Curk, “ROC curve, lift chart and calibration plot,” Metodoloski zvezki, vol. 3, no. 1, pp. 89–108, 2006.
  40. J. -F. Daisne, M. Sibomana, A. Bol, G. Cosnard, M. Lonneux, and V. Grégoire, “Evaluation of a multimodality image (CT, MRI and PET) coregistration procedure on phantom and head and neck cancer patients: accuracy, reproducibility and consistency,” Radiotherapy and Oncology, vol. 69, no. 3, pp. 237–245, 2003. View at Publisher · View at Google Scholar
  41. J. F. Daisne, T. Duprez, B. Weynand et al., “Tumor volume in pharyngolaryngeal squamous cell carcinoma: Comparison at CT, MR imaging, and FDG PET and validation with surgical specimen,” Radiology, vol. 233, no. 1, pp. 93–100, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. X. Geets, J. A. Lee, A. Bol, M. Lonneux, and V. Grégoire, “A gradient-based method for segmenting FDG-PET images: methodology and validation,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 34, no. 9, pp. 1427–1438, 2007. View at Publisher · View at Google Scholar · View at Scopus