About this Journal Submit a Manuscript Table of Contents
Advances in Hematology
Volume 2011 (2011), Article ID 274628, 8 pages
http://dx.doi.org/10.1155/2011/274628
Review Article

What Role for Angiogenesis in Childhood Acute Lymphoblastic Leukaemia?

1Laboratoire MERCI-EA3829, Rouen University, 22 rue Gambetta, 76000 Rouen, France
2Pediatric Hematology and Oncology, Rouen University Hospital, CHU Charles Nicolle, 1 rue de Germont, 76000 Rouen, France

Received 21 July 2011; Accepted 15 September 2011

Academic Editor: Domenico Ribatti

Copyright © 2011 P. Schneider et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Roskoski Jr., “Vascular endothelial growth factor (VEGF) signaling in tumor progression,” Critical Reviews in Oncology/Hematology, vol. 62, no. 3, pp. 179–213, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. B. Cristofaro and C. Emanueli, “Possible novel targets for therapeutic angiogenesis,” Current Opinion in Pharmacology, vol. 9, no. 2, pp. 102–108, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. M. Murakami and M. Simons, “Fibroblast growth factor regulation of neovascularization,” Current Opinion in Hematology, vol. 15, no. 3, pp. 215–220, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. B. Hu and S. Y. Cheng, “Angiopoietin-2: development of inhibitors for cancer therapy,” Current Oncology Reports, vol. 11, no. 2, pp. 111–116, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. D. Ribatti, M. T. Conconi, and G. G. Nussdorfer, “Nonclassic endogenous regulators of angiogenesis,” Pharmacological Reviews, vol. 59, no. 2, pp. 185–205, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. J. Folkman, “Angiogenesis in cancer, vascular, rheumatoid and other disease,” Nature Medicine, vol. 1, no. 1, pp. 27–31, 1995. View at Scopus
  7. J. Folkman, “Tumor angiogenesis: therapeutic implications,” New England Journal of Medicine, vol. 285, no. 21, pp. 1182–1186, 1971. View at Scopus
  8. E. Moroni, P. Dell'Era, M. Rusnati, and M. Presta, “Fibroblast growth factors and their receptors in hematopoiesis and hematological tumors,” Journal of Hematotherapy and Stem Cell Research, vol. 11, no. 1, pp. 19–32, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. D. Ribatti, A. Vacca, M. Rusnati, and M. Presta, “The discovery of basic fibroblast growth factor/fibroblast growth factor-2 and its role in haematological malignancies,” Cytokine and Growth Factor Reviews, vol. 18, no. 3-4, pp. 327–334, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. A. Aguayo, E. Estey, H. Kantarjian et al., “Cellular vascular endothelial growth factor is a predictor of outcome in patients with acute myeloid leukemia,” Blood, vol. 94, no. 11, pp. 3717–3721, 1999. View at Scopus
  11. X. Dong, Z. C. Han, and R. Yang, “Angiogenesis and antiangiogenic therapy in hematologic malignancies,” Critical Reviews in Oncology/Hematology, vol. 62, no. 2, pp. 105–118, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. K. Karjalainen, D. E. Jaalouk, C. E. Bueso-Ramos et al., “Targeting neuropilin-1 in human leukemia and lymphoma,” Blood, vol. 117, no. 3, pp. 920–927, 2011. View at Publisher · View at Google Scholar · View at PubMed
  13. F. Poyer, B. Coquerel, R. Pegahi et al., “Secretion of MMP-2 and MMP-9 induced by VEGF autocrine loop correlates with clinical features in childhood acute lymphoblastic leukemia,” Leukemia Research, vol. 33, no. 3, pp. 407–417, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. A. Aguayo, H. Kantarjian, T. Manshouri et al., “Angiogenesis in acute and chronic leukemias and myelodysplastic syndromes,” Blood, vol. 96, no. 6, pp. 2240–2245, 2000. View at Scopus
  15. G. Pruneri, F. Bertolini, D. Soligo et al., “Angiogenesis in myelodysplastic syndromes,” British Journal of Cancer, vol. 81, no. 8, pp. 1398–1401, 1999. View at Scopus
  16. P. Salven, A. Orpana, L. Teerenhovi, and H. Joensuu, “Simultaneous elevation in the serum concentrations of the angiogenic growth factors VEGF and bFGF is an independent predictor of poor prognosis in non-Hodgkin lymphoma: a single-institution study of 200 patients,” Blood, vol. 96, no. 12, pp. 3712–3718, 2000. View at Scopus
  17. S. Faderl, K. A. Do, M. M. Johnson et al., “Angiogenic factors may have a different prognostic role in adult acute lymphoblastic leukemia,” Blood, vol. 106, no. 13, pp. 4303–4307, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. M. A. Pulè, C. Gullmann, D. Dennis, C. McMahon, M. Jeffers, and O. P. Smith, “Increased angiogenesis in bone marrow of children with acute lymphoblastic leukaemia has no prognostic significance,” British Journal of Haematology, vol. 118, no. 4, pp. 991–998, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Yetgin, I. Yenicesu, M. Çetin, and M. Tuncer, “Clinical importance of serum vascular endothelial and basic fibroblast growth factors in children with acute lymphoblastic leukemia,” Leukemia and Lymphoma, vol. 42, no. 1-2, pp. 83–88, 2001.
  20. A. R. Perez-Atayde, S. E. Sallan, U. Tedrow, S. Connors, E. Allred, and J. Folkman, “Spectrum of tumor angiogenesis in the bone marrow of children with acute lymphoblastic leukemia,” American Journal of Pathology, vol. 150, no. 3, pp. 815–821, 1997. View at Scopus
  21. H. E. Daldrup-Link, T. Henning, and T. M. Link, “MR imaging of therapy-induced changes of bone marrow,” European Radiology, vol. 17, no. 3, pp. 743–761, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. J. L. Frater, N. E. Kay, C. L. Goolsby, S. E. Crawford, G. W. Dewald, and L. C. Peterson, “Dysregulated angiogenesis in B-chronic lymphocytic leukemia: Morphologic, immunohistochemical, and flow cytometric evidence,” Diagnostic Pathology, vol. 3, no. 1, article no. 16, 2008. View at Publisher · View at Google Scholar · View at PubMed
  23. L. Ma, M. D. Hollenberg, and J. L. Wallace, “Thrombin-induced platelet endostatin release is blocked by a proteinase activated receptor-4 (PAR4) antagonist,” British Journal of Pharmacology, vol. 134, no. 4, pp. 701–704, 2001.
  24. R. Koomagi, F. Zintl, A. Sauerbrey, and M. Volm, “Vascular endothelial growth factor in newly diagnosed and recurrent childhood acute lymphoblastic leukemia as measured by real-time quantitative polymerase chain reaction,” Clinical Cancer Research, vol. 7, no. 11, pp. 3381–3384, 2001.
  25. P. Schneider, M. Vasse, E. Sbaa-Ketata et al., “The growth of highly proliferative acute lymphoblastic leukemia may be independent of stroma and/or angiogenesis,” Leukemia, vol. 15, no. 7, pp. 1143–1145, 2001. View at Publisher · View at Google Scholar
  26. P. Schneider, M. Vasse, E. Legrand, M. P. Callat, and J. P. Vannier, “Have urinary levels of the angiogenic factors, basic fibroblast growth factor and vascular endothelial growth factor, a prognostic value in childhood acute lymphoblastic leukaemia,” British Journal of Haematology, vol. 122, no. 1, pp. 163–164, 2003. View at Publisher · View at Google Scholar
  27. S. Wellman, M. Guschmann, W. Griethe et al., “Activation of the HIF pathway in childhood ALL, prognostic implications of VEGF,” Leukemia, vol. 18, no. 5, pp. 926–933, 2004. View at Publisher · View at Google Scholar · View at PubMed
  28. I. A. Avramis, E. H. Panosyan, F. Dorey, J. S. Holcenberg, and V. I. Avramis, “Correlation between high vascular endothelial growth factor-A serum levels and treatment outcome in patients with standard-risk acute lymphoblastic leukemia: a report from Children's Oncology Group Study CCG-1962,” Clinical Cancer Research, vol. 12, no. 23, pp. 6978–6984, 2006. View at Publisher · View at Google Scholar · View at PubMed
  29. P. Schneider, M. Vasse, C. Corbière et al., “Endostatin variations in childhood acute lymphoblastic leukaemia-Comparison with basic fibroblast growth factor and vascular endothelial growth factor,” Leukemia Research, vol. 31, no. 5, pp. 629–638, 2007. View at Publisher · View at Google Scholar · View at PubMed
  30. C. J. Lyu, S. Y. Rha, and S. C. Won, “Clinical role of bone marrow angiogenesis in childhood acute lymphocytic leukemia,” Yonsei Medical Journal, vol. 48, no. 2, pp. 171–175, 2007. View at Publisher · View at Google Scholar
  31. D. Stachel, M. Albert, R. Meilbeck, M. Paulides, and I. Schmid, “Expression of angiogenic factors in childhood B-cell precursor acute lymphoblastic leukemia,” Oncology reports, vol. 17, no. 1, pp. 147–152, 2007.
  32. K. Werther, I. J. Christensen, and H. J. Nielsen, “Determination of vascular endothelial growth factor (VEGF) in circulating blood: significance of VEGF in various leucocytes and platelets,” Scandinavian Journal of Clinical and Laboratory Investigation, vol. 62, no. 5, pp. 343–350, 2002. View at Publisher · View at Google Scholar
  33. N. Glenjen, K. A. Mosevoll, and Y. Bruserud, “Serum levels of angiogenin, basic fibroblast growth factor and endostatin in patients receiving intensive chemotherapy for acute myelogenous leukemia,” International Journal of Cancer, vol. 101, no. 1, pp. 86–94, 2002. View at Publisher · View at Google Scholar · View at PubMed
  34. J. P. Veiga, L. F. Costa, S. E. Sallan, L. M. Nadler, and A. A. Cardoso, “Leukemia-stimulated bone marrow endothelium promotes leukemia cell survival,” Experimental Hematology, vol. 34, no. 5, pp. 610–621, 2006. View at Publisher · View at Google Scholar · View at PubMed
  35. S. A. Wickström, K. Alitalo, and J. Keski-Oja, “Endostatin signaling and regulation of endothelial cell-matrix interactions,” Advances in Cancer Research, vol. 94, no. 1, pp. 197–229, 2005. View at Publisher · View at Google Scholar · View at PubMed
  36. S. Molica, G. Cutrona, G. Vitelli et al., “Markers of increased angiogenesis and their correlation with biological parameters identifying high-risk patients in early B-cell chronic lymphocytic leukemia,” Leukemia Research, vol. 31, no. 11, pp. 1575–1578, 2007. View at Publisher · View at Google Scholar · View at PubMed
  37. U. Norén-Nyström, M. Heyman, P. Frisk et al., “Vascular density in childhood acute lymphoblastic leukaemia correlates to biological factors and outcome,” British Journal of Haematology, vol. 146, no. 5, pp. 521–530, 2009. View at Publisher · View at Google Scholar · View at PubMed
  38. J. P. Veiga, S. E. Sallan, L. M. Nadler, and A. A. Cardoso, “De novo angiogenesis confers a selective adventage to leukemic celles through contact-dependent maintenance of anti-apoptotic gene expression,” Blood, vol. 94, abstract 658a, 1999.
  39. G. Klein, E. Vellenga, M. W. Fraaije, W. A. Kamps, and E. S. J. M. De Bont, “The possible role of matrix metalloproteinase (MMP)-2 and MMP-9 in cancer, e.g. acute leukemia,” Critical Reviews in Oncology/Hematology, vol. 50, no. 2, pp. 87–100, 2004. View at Publisher · View at Google Scholar · View at PubMed
  40. P. Schneider, O. Costa, E. Legrand et al., “In vitro secretion of matrix metalloprotease 9 is a prognostic marker in childhood acute lymphoblastic leukemia,” Leukemia Research, vol. 34, no. 1, pp. 24–31, 2010. View at Publisher · View at Google Scholar · View at PubMed
  41. A. Suminoe, A. Matsuzaki, H. Hattori, Y. Koga, E. Ishii, and T. Hara, “Expression of matrix metalloproteinase (MMP) and tissue inhibitor of MMP (TIMP) genes in blasts of infant acute lymphoblastic leukemia with organ involvement,” Leukemia Research, vol. 31, no. 10, pp. 1437–1440, 2007. View at Publisher · View at Google Scholar · View at PubMed
  42. J. W. Snow, N. Abraham, M. C. Ma, N. W. Abbey, B. Herndier, and M. A. Goldsmith, “Oxygen saturation in the bone marrow of healthy volunteers,” Blood, vol. 99, no. 1, p. 394, 2002. View at Publisher · View at Google Scholar
  43. M. Fiegl, I. Samudio, K. Clise-Dwyer, J. K. Burks, Z. Mnjoyan, and M. Andreeff, “CXCR4 expression and biologic activity in acute myeloid leukemia are dependent on oxygen partial pressure,” Blood, vol. 113, no. 7, pp. 1504–1512, 2009. View at Publisher · View at Google Scholar · View at PubMed
  44. R. Yang and C. H. Zhong, “Angiogenesis in hematologic malignancies and its clinical implications,” International Journal of Hematology, vol. 75, no. 3, pp. 246–256, 2002. View at Publisher · View at Google Scholar
  45. F. Bertolini, W. Mingrone, A. Alietti et al., “Thalidomide in multiple myeloma, myelodysplastic syndromes and histiocytosis. Analysis of clinical results and of surrogate angiogenesis markers,” Annals of Oncology, vol. 12, no. 7, pp. 987–990, 2001. View at Publisher · View at Google Scholar
  46. J. E. Karp, I. Gojo, R. Pili et al., “Targeting vascular endothelial growth factor for relapsed and refractory adult acute myelogenous leukemias: therapy with sequential 1-β -D-arabinofuranosylcytosine, mitoxantrone, and bevacizumab,” Clinical Cancer Research, vol. 10, no. 11, pp. 3577–3585, 2004. View at Publisher · View at Google Scholar · View at PubMed
  47. G. Bergers and D. Hanahan, “Modes of resistance to anti-angiogenic therapy,” Nature Reviews Cancer, vol. 8, no. 8, pp. 592–603, 2008. View at Publisher · View at Google Scholar · View at PubMed
  48. H. Reikvam, K. J. Hatfield, P. Lassalle, A. Olsnes Kittang, E. Ersvær, and Ø. Bruserud, “Targeting the angiopoietin (Ang)/Tie-2 pathway in the crosstalk between acute myeloid leukaemia and endothelial cells: studies of Tie-2 blocking antibodies, exogenous Ang-2 and inhibition of constitutive agonistic Ang-1 release,” Expert Opinion on Investigational Drugs, vol. 19, no. 2, pp. 169–183, 2010. View at Publisher · View at Google Scholar · View at PubMed
  49. I. Petit, M. A. Karajannis, L. Vincent et al., “The microtubule-targeting agent CA4P regresses leukemic xenografts by disrupting interaction with vascular cells and mitochondrial-dependent cell death,” Blood, vol. 111, no. 4, pp. 1951–1961, 2008. View at Publisher · View at Google Scholar · View at PubMed
  50. C. Demacq, V. B. Vasconcellos, T. C. Izidoro-Toledo et al., “Vascular endothelial growth factor (VEGF) and endothelial nitric oxide synthase (NOS3) polymorphisms are associated with high relapse risk in childhood acute lymphoblastic leukemia (ALL),” Clinica Chimica Acta, vol. 411, no. 17-18, pp. 1335–1340, 2010. View at Publisher · View at Google Scholar · View at PubMed
  51. C. Schliemann, R. Bieker, N. Thoennissen et al., “Circulating angiopoietin-2 is a strong prognostic factor in acute myeloid leukemia,” Leukemia, vol. 21, no. 9, pp. 1901–1906, 2007. View at Publisher · View at Google Scholar · View at PubMed