About this Journal Submit a Manuscript Table of Contents
Advances in Hematology
Volume 2012 (2012), Article ID 727683, 12 pages
http://dx.doi.org/10.1155/2012/727683
Research Article

Bone Marrow and Peripheral Blood AML Cells Are Highly Sensitive to CNDAC, the Active Form of Sapacitabine

1Section of Bone Marrow Transplant and Cell Therapy, Rush University Medical Center, 1725 West Harrison Street, Chicago, IL 60612, USA
2Rush University Cancer Center, 1725 West Harrison Street, Chicago, IL 60612, USA
3Section of Hematology, Rush University Medical Center, 1725 West Harrison Street, Chicago, IL 60612, USA
4Department of Anatomy and Cell Biology, Rush University Medical Center, 1725 West Harrison Street, Chicago, IL 60612, USA

Received 18 June 2012; Accepted 4 August 2012

Academic Editor: Seiji Fukuda

Copyright © 2012 Sucheta Jagan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. Kern and E. H. Estey, “High-dose cytosine arabinoside in the treatment of acute myeloid leukemia: review of three randomized trials,” Cancer, vol. 107, no. 1, pp. 116–124, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. H. Kantarjian, G. Garcia-Manero, S. O'Brien et al., “Phase I clinical and pharmacokinetic study of oral sapacitabine in patients with acute leukemia and myelodysplastic syndrome,” Journal of Clinical Oncology, vol. 28, no. 2, pp. 285–291, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. M. S. Tallman, D. G. Gilliland, and J. M. Rowe, “Drug therapy for acute myeloid leukemia,” Blood, vol. 106, no. 4, pp. 1154–1163, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. K. F. Bradstock, J. P. Matthews, R. M. Lowenthal et al., “A randomized trial of high- versus conventional-dose cytarabine in consolidation chemotherapy for adult de novo acute myeloid leukemia in first remission after induction therapy containing high-dose cytarabine,” Blood, vol. 105, no. 2, pp. 481–488, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. F. Ravandi, H. Kantarjian, F. Giles, and J. Cortes, “New agents in acute myeloid leukemia and other myeloid disorders,” Cancer, vol. 100, no. 3, pp. 441–454, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. E. Estey and H. Dohner, “Acute myeloid leukaemia,” The Lancet, vol. 368, no. 9550, pp. 1894–1907, 2006. View at Publisher · View at Google Scholar
  7. S. Grant, “Ara-C: cellular and molecular pharmacology,” Advances in Cancer Research, vol. 72, pp. 197–233, 1997. View at Scopus
  8. C. M. Galmarini, J. R. Mackey, and C. Dumontet, “Nucleoside analogues: mechanisms of drug resistance and reversal strategies,” Leukemia, vol. 15, no. 6, pp. 875–890, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. C. M. Galmarini, X. Thomas, F. Calvo et al., “Potential mechanisms of resistance to cytarabine in AML patients,” Leukemia Research, vol. 26, no. 7, pp. 621–629, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. E. J. Fox, “Mechanism of action of mitoxantrone,” Neurology, vol. 63, no. 12, supplement 6, pp. S15–S18, 2004. View at Scopus
  11. K. Bhalla, A. M. Ibrado, E. Tourkina et al., “High-dose mitoxantrone induces programmed cell death or apoptosis in human myeloid leukemia cells,” Blood, vol. 82, no. 10, pp. 3133–3140, 1993. View at Scopus
  12. K. M. Rentsch, D. H. Horber, R. A. Schwendener, H. Wunderli-Allenspach, and E. Hänseler, “Comparative pharmacokinetic and cytotoxic analysis of three different formulations of mitoxantrone in mice,” British Journal of Cancer, vol. 75, no. 7, pp. 986–992, 1997. View at Scopus
  13. A. Azuma, P. Huang, A. Matsuda, and W. Plunkett, “2′-C-cyano-2′-deoxy-1-β-D-arabino-pentofuranosylcytosine: a novel anticancer nucleoside analog that causes both DNA strand breaks and G2 arrest,” Molecular Pharmacology, vol. 59, no. 4, pp. 725–731, 2001. View at Scopus
  14. A. Azuma, P. Huang, A. Matsuda, and W. Plunkett, “Cellular pharmacokinetics and pharmacodynamics of the deoxycytidine analog 2′-C-cyano-2′-deoxy-1-β-D-arabino-pentofuranosylcytosine (CNDAC),” Biochemical Pharmacology, vol. 61, no. 12, pp. 1497–1507, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Serova, C. M. Galmarini, A. Ghoul et al., “Antiproliferative effects of sapacitabine (CYC682), a novel 2′-deoxycytidine-derivative, in human cancer cells,” British Journal of Cancer, vol. 97, no. 5, pp. 628–636, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Hanaoka, M. Suzuki, T. Kobayashi et al., “Antitumor activity and novel DNA-self-strand-breaking mechanism of CNDAC (1-(2-C-cyano-2-deoxy-β-D-arabino-pentofuranosyl) cytosine) and its N4-palmitoyl derivative (CS-682),” International Journal of Cancer, vol. 82, no. 2, pp. 226–236, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Wang, X. Liu, A. Matsuda, and W. Plunkett, “Repair of 2′-C-cyano-2′-deoxy-1-β-D-arabino- pentofuranosylcytosine-induced DNA single-strand breaks by transcription-coupled nucleotide excision repair,” Cancer Research, vol. 68, no. 10, pp. 3881–3889, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Ge, T. L. Jensen, M. L. Stout et al., “The role of cytidine deaminase and GATA1 mutations in the increased cytosine arabinoside sensitivity of Down syndrome myeloblasts and leukemia cell lines,” Cancer Research, vol. 64, no. 2, pp. 728–735, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Gourdeau, L. Bibeau, F. Ouellet, D. Custeau, L. Bernier, and T. Bowlin, “Comparative study of a novel nucleoside analogue (Troxatyl, troxacitabine, BCH-4556) and AraC against leukemic human tumor xenografts expressing high or low cytidine deaminase activity,” Cancer Chemotherapy and Pharmacology, vol. 47, no. 3, pp. 236–240, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. X. B. Kong, W. P. Tong, and T. C. Chou, “Induction of deoxycytidine kinase by 5-azacytidine in an HL-60 cell line resistant to arabinosylcytosine,” Molecular Pharmacology, vol. 39, no. 2, pp. 250–257, 1991. View at Scopus
  21. T. Qin, E. M. Youssef, J. Jelinek et al., “Effect of cytarabine and decitabine in combination in human leukemic cell lines,” Clinical Cancer Research, vol. 13, no. 14, pp. 4225–4232, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. W. Fiskus, R. Rao, P. Fernandez et al., “Molecular and biologic characterization and drug sensitivity of pan-histone deacetylase inhibitor resistant acute myeloid leukemia cells,” Blood, vol. 112, no. 7, pp. 2896–2905, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. C. M. Li, X. G. Liu, X. C. Lin, X. W. Chen, and N. C. Liang, “Effects of mitoxantrone on the activity of human protein kinase CK2 holoenzyme,” Chinese Journal of Cancer, vol. 27, no. 8, pp. 809–815, 2008. View at Scopus
  24. W. S. Dalton, L. Hazlehurst, K. Shain, T. Landowski, and M. Alsina, “Targeting the bone marrow microenvironment in hematologic malignancies,” Seminars in Hematology, vol. 41, supplement 2, part 4, pp. 1–5, 2004. View at Scopus
  25. Z.-W. Li and W. S. Dalton, “Tumor microenvironment and drug resistance in hematologic malignancies,” Blood Reviews, vol. 20, no. 6, pp. 333–342, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. M. B. Meads, L. A. Hazlehurst, and W. S. Dalton, “The bone marrow microenvironment as a tumor sanctuary and contributor to drug resistance,” Clinical Cancer Research, vol. 14, no. 9, pp. 2519–2526, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. S. M. Garrido, F. R. Appelbaum, C. L. Willman, and D. E. Banker, “Acute myeloid leukemia cells are protected from spontaneous and drug-induced apoptosis by direct contact with a human bone marrow stromal cell line (HS-5),” Experimental Hematology, vol. 29, no. 4, pp. 448–457, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. B. Moshaver, M. van der Pol, A. Westra, G. Ossenkoppele, S. Zweegman, and G. J. Schuurhuis, “Chemotherapeutic treatment of bone marrow stromal cells strongly affects their protective effect on acute myeloid leukemia cell survival,” Leukemia and Lymphoma, vol. 49, no. 1, pp. 134–148, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. D. G. Bouzianas, “Cobblestone area measuring (CAM) assay: a new way of assessing the potential of human haemopoietic stem cells,” Methods in Cell Science, vol. 25, no. 3-4, pp. 201–210, 2003. View at Scopus
  30. J. Edelmann, L. Klein-Hitpass, A. Carpinteiro et al., “Bone marrow fibroblasts induce expression of PI3K/NF-κB pathway genes and a pro-angiogenic phenotype in CLL cells,” Leukemia Research, vol. 32, no. 10, pp. 1565–1572, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. B. Nervi, P. Ramirez, M. P. Rettig et al., “Chemosensitization of acute myeloid leukemia (AML) following mobilization by the CXCR4 antagonist AMD3100,” Blood, vol. 113, no. 24, pp. 6206–6214, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Matsuda, Y. Nakajima, A. Azuma, M. Tanaka, and T. Sasaki, “Nucleosides and nucleotides. 100. 2'-C-cyano-2'-deoxy-1-β-D-arabinofuranosyl-cytosine (CNDAC): design of a potential mechanism-based DNA-strand-breaking antineoplastic nucleoside,” Journal of Medicinal Chemistry, vol. 34, no. 9, pp. 2917–2919, 1991. View at Scopus
  33. M. Tanaka, A. Matsuda, T. Terao, and T. Sasaki, “Antitumor activity of a novel nucleoside, 2′-C-cyano-2′-deoxy-1-β-D-arabinofuranosylcytosine (CNDAC) against murine and human tumors,” Cancer Letters, vol. 64, no. 1, pp. 67–74, 1992. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Gilbert, M. A. Carducci, S. D. Baker, E. C. Dees, and R. Donehower, “A Phase I study of the oral antimetabolite, CS-682, administered once daily 5 days per week in patients with refractory solid tumor malignancies,” Investigational New Drugs, vol. 24, no. 6, pp. 499–508, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. G. Edan, S. Morrissey, and E. Le Page, “Rationale for the use of mitoxantrone in multiple sclerosis,” Journal of the Neurological Sciences, vol. 223, no. 1, pp. 35–39, 2004. View at Publisher · View at Google Scholar · View at Scopus