About this Journal Submit a Manuscript Table of Contents
Advances in Hematology
Volume 2012 (2012), Article ID 857058, 9 pages
http://dx.doi.org/10.1155/2012/857058
Review Article

Zebrafish Thrombocytes: Functions and Origins

Department of Biological Sciences, University of North Texas, Denton, TX 76203-5017, USA

Received 2 March 2012; Accepted 19 April 2012

Academic Editor: Jason Berman

Copyright © 2012 Gauri Khandekar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Jagadeeswaran, M. Gregory, K. Day, M. Cykowski, and B. Thattaliyath, “Zebrafish: a genetic model for hemostasis and thrombosis,” Journal of Thrombosis and Haemostasis, vol. 3, no. 1, pp. 46–53, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. G. Davì and C. Patrono, “Mechanisms of disease: platelet activation and atherothrombosis,” The New England Journal of Medicine, vol. 357, no. 24, pp. 2482–2494, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. P. Harrison, “Platelet function analysis,” Blood Reviews, vol. 19, no. 2, pp. 111–123, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. R. J. Westrick, M. E. Winn, and D. T. Eitzman, “Murine models of vascular thrombosis (Eitzman series),” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 10, pp. 2079–2093, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. K. D. Mason, M. R. Carpinelli, J. I. Fletcher et al., “Programmed anuclear cell death delimits platelet life span,” Cell, vol. 128, no. 6, pp. 1173–1186, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. C. I. Jones, S. Bray, S. F. Garner et al., “A functional genomics approach reveals novel quantitative trait loci associated with platelet signaling pathways,” Blood, vol. 114, no. 7, pp. 1405–1416, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Thijs, H. Deckmyn, and K. Broos, “Model systems of genetically modified platelets,” Blood, vol. 119, no. 7, pp. 1634–1642, 2012.
  8. D. Carradice and G. J. Lieschke, “Zebrafish in hematology: sushi or science?” Blood, vol. 111, no. 7, pp. 3331–3342, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. L. Solnica-Krezel, A. F. Schier, and W. Driever, “Efficient recovery of ENU-induced mutations from the zebrafish germline,” Genetics, vol. 136, no. 4, pp. 1401–1420, 1994. View at Scopus
  10. G. Streisinger, C. Walker, and N. Dower, “Production of clones of homozygous diploid zebra fish (BrachyDanio rerio),” Nature, vol. 291, no. 5813, pp. 293–296, 1981. View at Scopus
  11. M. N. O'Connor, I. I. Salles, A. Cvejic et al., “Functional genomics in zebrafish permits rapid characterization of novel platelet membrane proteins,” Blood, vol. 113, no. 19, pp. 4754–4762, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. P. Jagadeeswaran, J. P. Sheehan, F. E. Craig, and D. Troyer, “Identification and characterization of zebrafish thrombocytes,” British Journal of Haematology, vol. 107, no. 4, pp. 731–738, 1999. View at Scopus
  13. T. Grosser, S. Yusuff, E. Cheskis, et al., “Developmental expression of functional cyclooxygenases in zebrafish,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 12, pp. 8418–8423, 2002.
  14. S. Kim, M. Carrillo, V. Kulkarni, and P. Jagadeeswaran, “Evolution of primary hemostasis in early vertebrates,” PLoS ONE, vol. 4, no. 12, article e8403, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Carrillo, S. Kim, S. K. Rajpurohit, V. Kulkarni, and P. Jagadeeswaran, “Zebrafish von Willebrand factor,” Blood Cells, Molecules, and Diseases, vol. 45, no. 4, pp. 326–333, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. M. R. Lang, G. Gihr, M. P. Gawaz, and I. Müller, “Hemostasis in Danio rerio: is the zebrafish a useful model for platelet research?” Journal of Thrombosis and Haemostasis, vol. 8, no. 6, pp. 1159–1169, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Gregory, R. Hanumanthaiah, and P. Jagadeeswaran, “Genetic analysis of hemostasis and thrombosis using vascular occlusion,” Blood Cells, Molecules & Diseases, vol. 29, no. 3, pp. 286–295, 2002. View at Scopus
  18. P. Jagadeeswaran, M. Carrillo, U. P. Radhakrishnan, S. K. Rajpurohit, and S. Kim, “Laser-induced thrombosis in Zebrafish,” Methods in Cell Biology, vol. 101, pp. 197–203, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. P. Jagadeeswaran, M. Cykowski, and B. Thattaliyath, “Vascular occlusion and thrombosis in zebrafish,” Methods in Cell Biology, vol. 76, pp. 489–500, 2004. View at Scopus
  20. P. Jagadeeswaran, Y. C. Liu, and J. P. Sheehan, “Analysis of hemostasis in the zebrafish,” Methods in Cell Biology, no. 59, pp. 337–357, 1999. View at Scopus
  21. P. Jagadeeswaran, R. Paris, and P. Rao, “Laser-induced thrombosis in zebrafish larvae: a novel genetic screening method for thrombosis,” Methods in Molecular Medicine, vol. 129, pp. 187–195, 2006. View at Scopus
  22. M. Gregory and P. Jagadeeswaran, “Selective labeling of zebrafish thrombocytes: quantitation of thrombocyte function and detection during development,” Blood Cells, Molecules, and Diseases, vol. 28, no. 3, pp. 418–427, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. B. Thattaliyath, M. Cykowski, and P. Jagadeeswaran, “Young thrombocytes initiate the formation of arterial thrombi in zebrafish,” Blood, vol. 106, no. 1, pp. 118–124, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. P. Jagadeeswaran, S. Lin, B. Weinstein, A. Hutson, and S. Kim, “Loss of GATA1 and gain of FLI1 expression during thrombocyte maturation,” Blood Cells, Molecules, and Diseases, vol. 44, no. 3, pp. 175–180, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. R. J. Berckmans, R. Nieuwland, A. N. Böing, F. P. H. T. M. Romijn, C. E. Hack, and A. Sturk, “Cell-derived microparticles circulate in healthy humans and support low grade thrombin generation,” Thrombosis and Haemostasis, vol. 85, no. 4, pp. 639–646, 2001. View at Scopus
  26. D. E. Connor, T. Exner, D. D. F. Ma, and J. E. Joseph, “The majority of circulating platelet-derived microparticles fail to bind annexin V, lack phospholipid-dependent procoagulant activity and demonstrate greater expression of glycoprotein Ib,” Thrombosis and Haemostasis, vol. 103, no. 5, pp. 1044–1052, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Tesse, M. C. Martínez, F. Meziani et al., “Origin and biological significance of shed-membrane microparticles,” Endocrine, Metabolic and Immune Disorders, vol. 6, no. 3, pp. 287–294, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. M. C. Martínez, A. Tesse, F. Zobairi, and R. Andriantsitohaina, “Shed membrane microparticles from circulating and vascular cells in regulating vascular function,” American Journal of Physiology, vol. 288, no. 3, pp. H1004–H1009, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Merten, R. Pakala, P. Thiagarajan, and C. R. Benedict, “Platelet microparticles promote platelet interaction with subendothelial matrix in a glycoprotein IIb/IIIa-dependent mechanism,” Circulation, vol. 99, no. 19, pp. 2577–2582, 1999. View at Scopus
  30. R. Nieuwland, R. J. Berckmans, S. McGregor et al., “Cellular origin and procoagulant properties of microparticles in meningococcal sepsis,” Blood, vol. 95, no. 3, pp. 930–935, 2000. View at Scopus
  31. P. A. Holme, N. O. Solum, F. Brosstad, M. Roger, and M. Abdelnoor, “Demonstration of platelet-derived microvesicles in blood from patients with activated coagulation and fibrinolysis using a filtration technique and Western blotting,” Thrombosis and Haemostasis, vol. 72, no. 5, pp. 666–671, 1994. View at Scopus
  32. M. Gawaz, F. J. Neumann, I. Ott, A. Schiessler, and A. Schömig, “Platelet function in acute myocardial infarction treated with direct angioplasty,” Circulation, vol. 93, no. 2, pp. 229–237, 1996. View at Scopus
  33. S. Kim, M. Carrillo, U. P. Radhakrishnan, and P. Jagadeeswaran, “Role of thrombocyte and non-thrombocyte microparticles in hemostasis,” Blood Cells Molecules and Diseases, vol. 48, no. 3, pp. 188–196, 2012.
  34. R. Bahadori, O. Rinner, H. B. Schonthaler et al., “The zebrafish fade out mutant: a novel genetic model for Hermansky-Pudlak syndrome,” Investigative Ophthalmology and Visual Science, vol. 47, no. 10, pp. 4523–4531, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Nasevicius and S. C. Ekker, “Effective targeted gene “knockdown” in zebrafish,” Nature Genetics, vol. 26, no. 2, pp. 216–220, 2000. View at Publisher · View at Google Scholar · View at Scopus
  36. K. Day, N. Krishnegowda, and P. Jagadeeswaran, “Knockdown of prothrombin in zebrafish,” Blood Cells, Molecules, and Diseases, vol. 32, no. 1, pp. 191–198, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Srivastava, et al., “The role of acvr1, ift122, poldip2 and ripk5 in zebrafish hemostasis,” in Proceedings of the International Conference for Zebrafish Development and Genetics, p. 577, Madison, Wis,USA, 2008.
  38. P. Jagadeeswaran and P. Rao, “Role of KIAA0472, a Novel Ser/Thr Kinase in zebrafish thrombosis,” in Proceedings of the International Conference on Zebrafish Development and Genetics, Madison, Wis, USA, 2006.
  39. E. Tournoij, G. J. Weber, J. W. N. Akkerman et al., “Mlck1a is expressed in zebrafish thrombocytes and is an essential component of thrombus formation,” Journal of Thrombosis and Haemostasis, vol. 8, no. 3, pp. 588–595, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. C. M. Williams, et al., “Protein kinase C alpha and beta are positive regulators of thrombus formation in vivo in a zebrafish (Danio rerio) model of thrombosis,” Journal of Thrombosis and Haemostasis, vol. 9, no. 12, pp. 2457–2465, 2011.
  41. C. M. Williams and A. W. Poole, “Using zebrafish (Danio rerio) to assess gene function in thrombus formation,” Methods in Molecular Biology, vol. 788, pp. 305–319, 2012.
  42. S. Kim, U. P. Radhakrishnan, S. K. Rajpurohit, V. Kulkarni, and P. Jagadeeswaran, “Vivo-Morpholino knockdown of αIIb: a novel approach to inhibit thrombocyte function in adult zebrafish,” Blood Cells, Molecules, and Diseases, vol. 44, no. 3, pp. 169–174, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. P. Jagadeeswaran, M. Gregory, S. Johnson, and B. Thankavel, “Haemostatic screening and identification of zebrafish mutants with coagulation pathway defects: an approach to identifying novel haemostatic genes in man,” British Journal of Haematology, vol. 110, no. 4, pp. 946–956, 2000. View at Publisher · View at Google Scholar · View at Scopus
  44. V. Kulkarni, et al., “Separation of young and mature thrombocytes by a novel immuno-selection method,” Blood Cells Molecules and Diseases, vol. 48, no. 3, pp. 183–187, 2012.
  45. J. F. Amatruda and L. I. Zon, “Dissecting hematopoiesis and disease using the zebrafish,” Developmental Biology, vol. 216, no. 1, pp. 1–15, 1999. View at Publisher · View at Google Scholar · View at Scopus
  46. A. J. Davidson and L. I. Zon, “The “definitive” (and “primitive”) guide to zebrafish hematopoiesis,” Oncogene, vol. 23, no. 43, pp. 7233–7246, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. H. Lin, et al., “Production and characterization of transgenic zebrafish (Danio rario) with fluorescent thrombocytes and thrombocyte precursors,” Blood, vol. 98, p. 2147, 2001.
  48. H. F. Lin, D. Traver, H. Zhu et al., “Analysis of thrombocyte development in CD41-GFP transgenic zebrafish,” Blood, vol. 106, no. 12, pp. 3803–3810, 2005. View at Publisher · View at Google Scholar · View at Scopus
  49. J. Y. Bertrand, A. D. Kim, S. Teng, and D. Traver, “CD41+ cmyb+ precursors colonize the zebrafish pronephros by a novel migration route to initiate adult hematopoiesis,” Development, vol. 135, no. 10, pp. 1853–1862, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. K. Kissa, E. Murayama, A. Zapata et al., “Live imaging of emerging hematopoietic stem cells and early thymus colonization,” Blood, vol. 111, no. 3, pp. 1147–1156, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. D. Ma, J. Zhang, H. F. Lin, J. Italiano, and R. I. Handin, “The identification and characterization of zebrafish hematopoietic stem cells,” Blood, vol. 118, no. 2, pp. 289–297, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. M. L. Kalev-Zylinska, J. A. Horsfield, M. V. C. Flores et al., “Runx1 is required for zebrafish blood and vessel development and expression of a human RUNX-1-CBF2T1 transgene advances a model for studies of leukemogenesis,” Development, vol. 129, no. 8, pp. 2015–2030, 2002. View at Scopus
  53. R. Sood, M. A. English, C. L. Belele et al., “Development of multilineage adult hematopoiesis in the zebrafish with a runx1 truncation mutation,” Blood, vol. 115, no. 14, pp. 2806–2809, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. Y. Zhang, et al., “cMyb regulates hematopoietic stem/progenitor cell mobilization during zebrafish hematopoiesis,” Blood, vol. 118, no. 15, pp. 4093–4101, 2011.
  55. C. Grabher, E. M. Payne, A. B. Johnston et al., “Zebrafish microRNA-126 determines hematopoietic cell fate through c-Myb,” Leukemia, vol. 25, no. 3, pp. 506–514, 2011. View at Publisher · View at Google Scholar · View at Scopus
  56. A. G. Muntean and J. D. Crispino, “Differential requirements for the activation domain and FOG-interaction surface of GATA-1 in megakaryocyte gene expression and development,” Blood, vol. 106, no. 4, pp. 1223–1231, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. J. D. Amigo, G. E. Ackermann, J. J. Cope et al., “The role and regulation of friend of GATA-1 (FOG-1) during blood development in the zebrafish,” Blood, vol. 114, no. 21, pp. 4654–4663, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. H. J. Johnson, M. J. Gandhi, E. Shafizadeh et al., “In vivo inactivation of MASTL kinase results in thrombocytopenia,” Experimental Hematology, vol. 37, no. 8, pp. 901–908, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. M. R. Tijssen, A. Cvejic, A. Joshi et al., “Genome-wide analysis of simultaneous GATA1/2, RUNX1, FLI1, and SCL binding in megakaryocytes identifies hematopoietic regulators,” Developmental Cell, vol. 20, no. 5, pp. 597–609, 2011. View at Publisher · View at Google Scholar · View at Scopus
  60. C. Gieger, et al., “New gene functions in megakaryopoiesis and platelet formation,” Nature, vol. 480, no. 7376, pp. 201–208, 2011.
  61. C. A. Albers, A. Cvejic, R. Favier et al., “Exome sequencing identifies NBEAL2 as the causative gene for gray platelet syndrome,” Nature Genetics, vol. 43, no. 8, pp. 735–737, 2011. View at Publisher · View at Google Scholar · View at Scopus
  62. S. Louwette, V. Labarque, C. Wittevrongel et al., “Regulator of G-protein signaling 18 controls megakaryopoiesis and the cilia-mediated vertebrate mechanosensory system,” The FASEB Journal, vol. 26, no. 5, pp. 2125–2136, 2012.
  63. J. Kulinski, D. Besack, C. A. Oleykowski, A. K. Godwin, and A. T. Yeung, “CEL I enzymatic mutation detection assay,” BioTechniques, vol. 29, no. 1, pp. 44–48, 2000. View at Scopus
  64. E. Wienholds, F. van Eeden, M. Kosters, J. Mudde, R. H. A. Plasterk, and E. Cuppen, “Efficient target-selected mutagenesis in zebrafish,” Genome Research, vol. 13, no. 12, pp. 2700–2707, 2003. View at Publisher · View at Google Scholar · View at Scopus
  65. Y. Doyon, J. M. McCammon, J. C. Miller et al., “Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases,” Nature Biotechnology, vol. 26, no. 6, pp. 702–708, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. S. C. Ekker, “Zinc finger-based knockout punches for zebrafish genes,” Zebrafish, vol. 5, no. 2, pp. 121–123, 2008. View at Publisher · View at Google Scholar · View at Scopus
  67. K. J. Clark, D. F. Voytas, and S. C. Ekker, “A TALE of two nucleases: gene targeting for the masses?” Zebrafish, vol. 8, no. 3, pp. 147–149, 2011.
  68. D. Caroll and B. Zhang, “Primer and interviews: advances in targeted gene modification,” Developmental Dynamics, vol. 240, no. 12, pp. 2688–96, 2011.