About this Journal Submit a Manuscript Table of Contents
Advances in Human-Computer Interaction
Volume 2012 (2012), Article ID 127627, 10 pages
http://dx.doi.org/10.1155/2012/127627
Research Article

Source Detection and Functional Connectivity of the Sensorimotor Cortex during Actual and Imaginary Limb Movement: A Preliminary Study on the Implementation of eConnectome in Motor Imagery Protocols

Lab of Medical Informatics, Medical School, Aristotle University of Thessaloniki (AUTH), 54124 Thessaloniki, Greece

Received 6 July 2012; Revised 29 November 2012; Accepted 29 November 2012

Academic Editor: Christos Papadelis

Copyright © 2012 Alkinoos Athanasiou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Decety and D. H. Ingvar, “Brain structures participating in mental simulation of motor behavior: a neuropsychological interpretation,” Acta Psychologica, vol. 73, no. 1, pp. 13–34, 1990. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Athanasiou and P. D. Bamidis, “A review on brain computer interfaces: contemporary achievements and future goals towards movement restoration,” Aristotle University Medical Journal, vol. 37, no. 3, pp. 35–44, 2010.
  3. R. Sitaram, A. Caria, R. Veit et al., “FMRI brain-computer interface: a tool for neuroscientific research and treatment,” Computational Intelligence and Neuroscience, vol. 2007, Article ID 25487, 10 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. G. Pfurtscheller and C. Neuper, “Motor imagery activates primary sensorimotor area in humans,” Neuroscience Letters, vol. 239, no. 2-3, pp. 65–68, 1997. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Arroyo, R. P. Lesser, B. Gordon, S. Uematsu, D. Jackson, and R. Webber, “Functional significance of the mu rhythm of human cortex: an electrophysiologic study with subdural electrodes,” Electroencephalography and Clinical Neurophysiology, vol. 87, no. 3, pp. 76–87, 1993. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Neuper, R. Scherer, S. Wriessnegger, and G. Pfurtscheller, “Motor imagery and action observation: modulation of sensorimotor brain rhythms during mental control of a brain-computer interface,” Clinical Neurophysiology, vol. 120, no. 2, pp. 239–247, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. E. V. C. Friedrich, D. J. McFarland, C. Neuper, T. M. Vaughan, P. Brunner, and J. R. Wolpaw, “A scanning protocol for a sensorimotor rhythm-based brain-computer interface,” Biological Psychology, vol. 80, no. 2, pp. 169–175, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Zhou, J. Yao, J. Deng, and J. P. A. Dewald, “EEG-based classification for elbow versus shoulder torque intentions involving stroke subjects,” Computers in Biology and Medicine, vol. 39, no. 5, pp. 443–452, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. V. Morash, O. Bai, S. Furlani, P. Lin, and M. Hallett, “Classifying EEG signals preceding right hand, left hand, tongue, and right foot movements and motor imageries,” Clinical Neurophysiology, vol. 119, no. 11, pp. 2570–2578, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Astolfi, H. Bakardjian, F. Cincotti et al., “Estimate of causality between independent cortical spatial patterns during movement volition in spinal cord injured patients,” Brain Topography, vol. 19, no. 3, pp. 107–123, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. A. A. Ioannides, “Dynamic functional connectivity,” Current Opinion in Neurobiology, vol. 17, no. 2, pp. 161–170, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. F. Varela, J. P. Lachaux, E. Rodriguez, and J. Martinerie, “The brainweb: phase synchronization and large-scale integration,” Nature Reviews Neuroscience, vol. 2, no. 4, pp. 229–239, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. K. J. Friston, “Functional and effective connectivity in neuroimaging: a synthesis,” Human Brain Mapping, vol. 2, no. 1-2, pp. 56–78, 1994. View at Scopus
  14. C. W. J. Granger, “Investigating causal relations by econometric models and cross spectra methods,” Econometrica, vol. 37, pp. 424–438, 1969. View at Publisher · View at Google Scholar
  15. F. de Vico Fallani, L. Astolfi, F. Cincotti et al., “Cortical functional connectivity networks in normal and spinal cord injured patients: evaluation by graph analysis,” Human Brain Mapping, vol. 28, no. 12, pp. 1334–1346, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. B. He, Y. Dai, L. Astolfi, F. Babiloni, H. Yuan, and L. Yang, “eConnectome: a MATLAB toolbox for mapping and imaging of brain functional connectivity,” Journal of Neuroscience Methods, vol. 195, no. 2, pp. 261–269, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Athanasiou, E. Chatzitheodorou, K. Kalogianni, C. Lithari, I. Moulos, and P. D. Bamidis, “Comparing sensorimotor cortex activation during actual and imaginary movement,” in Proceedings of the 12th Mediterranean Conference on Medical and Biological Engineering and Computing (MEDICON '10), vol. 29 of IFMBE Proceedings, pp. 111–114, Chalkidiki, Greece, May 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Delorme and S. Makeig, “EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis,” Journal of Neuroscience Methods, vol. 134, no. 1, pp. 9–21, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. A. M. Dale and M. I. Sereno, “Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: a linear approach,” Journal of Cognitive Neuroscience, vol. 5, no. 2, pp. 162–176, 1993. View at Scopus
  20. P. A. Valdés-Hernández, N. von Ellenrieder, A. Ojeda-Gonzalez, et al., “Approximate average head models for EEG source imaging,” Journal of Neuroscience Methods, vol. 185, no. 1, pp. 125–132, 2009. View at Publisher · View at Google Scholar
  21. F. Babiloni, F. Cincotti, C. Babiloni et al., “Estimation of the cortical functional connectivity with the multimodal integration of high-resolution EEG and fMRI data by directed transfer function,” NeuroImage, vol. 24, no. 1, pp. 118–131, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Wilke, L. Ding, and B. He, “Estimation of time-varying connectivity patterns through the use of an adaptive directed transfer function,” IEEE Transactions on Biomedical Engineering, vol. 55, no. 11, pp. 2557–2564, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. R. Oostenveld and P. Praamstra, “The five percent electrode system for high-resolution EEG and ERP measurements,” Clinical Neurophysiology, vol. 112, no. 4, pp. 713–719, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Scherer, A. Schloegl, F. Lee, H. Bischof, J. Janša, and G. Pfurtscheller, “The self-paced graz brain-computer interface: methods and applications,” Computational Intelligence and Neuroscience, vol. 2007, Article ID 79826, 9 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. D. J. Krusienski, G. Schalk, D. J. McFarland, and J. R. Wolpaw, “A μ-rhythm matched filter for continuous control of a brain-computer interface,” IEEE Transactions in Biomedical Engineering, vol. 54, no. 2, pp. 273–280, 2007. View at Publisher · View at Google Scholar
  26. F. Pichiorri, F. De Vico Fallani, F. Cincotti et al., “Sensorimotor rhythm-based brain-computer interface training: the impact on motor cortical responsiveness,” Journal of Neural Engineering, vol. 8, no. 2, Article ID 025020, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. S. H. Jin, P. Lin, and M. Hallet, “Reorganization of brain functional small-world networks during finger movements,” Human Brain Mapping, vol. 33, no. 4, pp. 861–872, 2012. View at Publisher · View at Google Scholar
  28. F. Wendling, K. Ansari-Asl, F. Bartolomei, and L. Senhadji, “From EEG signals to brain connectivity: a model-based evaluation of interdependence measures,” Journal of Neuroscience Methods, vol. 183, no. 1, pp. 9–18, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. T. Li, J. Hong, and J. Zhang, “Electroencephalographic (EEG) control of cursor movement in three-dimensional scene based on small-world neural network,” in Proceedings of the IEEE International Conference on Intelligent Computing and Intelligent Systems (ICIS '10), vol. 3, pp. 587–591, Xiamen, China, October 2010. View at Publisher · View at Google Scholar · View at Scopus