About this Journal Submit a Manuscript Table of Contents
Advances in Human-Computer Interaction
Volume 2012 (2012), Article ID 185320, 10 pages
http://dx.doi.org/10.1155/2012/185320
Research Article

A Combination of Pre- and Postprocessing Techniques to Enhance Self-Paced BCIs

1Department of Biomedical Engineering, Tarbiat Modares University, Tehran 14115194, Iran
2Intelligent Systems Research Centre, University of Ulster, Derry BT48 7JL, UK

Received 5 July 2012; Revised 29 October 2012; Accepted 1 December 2012

Academic Editor: Christoph Braun

Copyright © 2012 Raheleh Mohammadi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T. M. Vaughan, “Brain-computer interfaces for communication and control,” Clinical Neurophysiology, vol. 113, no. 6, pp. 767–791, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. B. Z. Allison, E. W. Wolpaw, and J. R. Wolpaw, “Brain-computer interface systems: progress and prospects,” Expert Review of Medical Devices, vol. 4, no. 4, pp. 463–474, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Marcel and J. D. Millán, “Person authentication using brainwaves (EEG) and maximum a posteriori model adaptation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 4, pp. 743–752, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Scherer, A. Schloegl, F. Lee, H. Bischof, J. Janša, and G. Pfurtscheller, “The self-paced graz brain-computer interface: methods and applications,” Computational Intelligence and Neuroscience, vol. 2007, Article ID 79826, 9 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. S. G. Mason and G. E. Birch, “A brain-controlled switch for asynchronous control applications,” IEEE Transactions on Biomedical Engineering, vol. 47, no. 10, pp. 1297–1307, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Babiloni, F. Carducci, F. Cincotti et al., “Human movement-related potentials vs desynchronization of EEG alpha rhythm: a high-resolution EEG study,” NeuroImage, vol. 10, no. 6, pp. 658–665, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Pfurtscheller and F. H. Lopes da Silva, “Event-related EEG/MEG synchronization and desynchronization: basic principles,” Clinical Neurophysiology, vol. 110, no. 11, pp. 1842–1857, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. G. Pfurtscheller and C. Neuper, “Motor imagery activates primary sensorimotor area in humans,” Neuroscience Letters, vol. 239, no. 2-3, pp. 65–68, 1997. View at Publisher · View at Google Scholar · View at Scopus
  9. E. Gerardin, A. Sirigu, S. Léhericy et al., “Partially overlapping neural networks for real and imagined hand movements,” Cerebral Cortex, vol. 10, no. 11, pp. 1093–1104, 2000. View at Scopus
  10. Z. Yu, S. G. Mason, and G. E. Birch, “Enhancing the performance of the LF-ASD brain computer interface,” in Proceedings of the 2nd Joint Engineering in Medicine and Biology, 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society EMBS/BMES Conference, vol. 3, pp. 2443–2444, October 2002. View at Publisher · View at Google Scholar
  11. J. F. Borisoff, S. G. Mason, A. Bashashati, and G. E. Birch, “Brain-computer interface design for asynchronous control applications: improvements to the LF-ASD asynchronous brain switch,” IEEE Transactions on Biomedical Engineering, vol. 51, no. 6, pp. 985–992, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Bashashati, M. Fatourechi, R. K. Ward, and G. E. Birch, “User customization of the feature generator of an asynchronous brain interface,” Annals of Biomedical Engineering, vol. 34, no. 6, pp. 1051–1060, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Bashashati, S. Mason, R. K. Ward, and G. E. Birch, “An improved asynchronous brain interface: making use of the temporal history of the LF-ASD feature vectors,” Journal of Neural Engineering, vol. 3, no. 2, pp. 87–94, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Fatourechi, R. K. Ward, and G. E. Birch, “A self-paced brain-computer interface system with a low false positive rate,” Journal of Neural Engineering, vol. 5, no. 1, pp. 9–23, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. C. S. L. Tsui, A. Vuckovic, R. Palaniappan, F. Sepulveda, and J. Q. Gan, “Narrow band spectral analysis for movement onset detection in asynchronous BCI,” in Proceedings of the 3rd International Workshop on Brain-Computer Interfaces, pp. 30–31, Graz, Austria, 2006.
  16. B. A. S. Hasan and J. Q. Gan, “Unsupervised movement onset detection from EEG recorded during self-paced real hand movement,” Medical and Biological Engineering and Computing, vol. 48, no. 3, pp. 245–253, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Qian, P. Nikolov, D. Huang, D. Y. Fei, X. Chen, and O. Bai, “A motor imagery-based online interactive brain-controlled switch: paradigm development and preliminary test,” Clinical Neurophysiology, vol. 121, no. 8, pp. 1304–1313, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Solis-Escalante, G. Müller-Putz, and G. Pfurtscheller, “Overt foot movement detection in one single Laplacian EEG derivation,” Journal of Neuroscience Methods, vol. 175, no. 1, pp. 148–153, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Pfurtscheller and T. Solis-Escalante, “Could the beta rebound in the EEG be suitable to realize a “brain switch”?” Clinical Neurophysiology, vol. 120, no. 1, pp. 24–29, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. T. Wang, J. Deng, and B. He, “Classifying EEG-based motor imagery tasks by means of time-frequency synthesized spatial patterns,” Clinical Neurophysiology, vol. 115, no. 12, pp. 2744–2753, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. N. Yamawaki, C. Wilke, Z. Liu, and B. He, “An enhanced time-frequency-spatial approach for motor imagery classification,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 14, no. 2, pp. 250–254, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. G. Townsend, B. Graimann, and G. Pfurtscheller, “Continuous EEG classification during motor imagery—simulation of an asynchronous BCI,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 12, no. 2, pp. 258–265, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. B. Hjorth, “An on line transformation of EEG scalp potentials into orthogonal source derivations,” Electroencephalography and Clinical Neurophysiology, vol. 39, no. 5, pp. 526–530, 1975. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Leeb, D. Friedman, G. R. Müller-Putz, R. Scherer, M. Slater, and G. Pfurtscheller, “Self-paced (asynchronous) BCI control of a wheelchair in virtual environments: a case study with a tetraplegic,” Computational Intelligence and Neuroscience, vol. 2007, Article ID 79642, 8 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Leeb, D. Friedman, R. Scherer, M. Slater, and G. Pfurtscheller, “EEGbased, “walking” of a tetraplegic in virtual reality,” in Proceedings of the Maia Brain Computer Interfaces Workshop—Challenging Brain Computer Interfaces: Neural Engineering Meets Clinical Needs in Neurorehabilitation, pp. 43–44, 2006.
  26. F. Lotte, Y. Renard, and A. Lécuyer, “Self-paced brain-computer interaction with virtual worlds: a quantitative and qualitative study ‘out-of-the-lab’,” in Proceedings of the 4th International Brain-Computer Interface Workshop and Training Course, 2008.
  27. G. Pfurtscheller and C. Neuper, “Motor imagery direct communication,” Proceedings of the IEEE, vol. 89, no. 7, pp. 1123–1134, 2001. View at Scopus
  28. A. Schlogl, C. Brunner, R. Scherer, and A. Glatz, “BioSig: an open-source software library for BCI research,” in Towards Brain-Computer Interfacing, pp. 347–358, MIT Press, Boston, Mass, USA, 2007.
  29. F. Lotte, M. Congedo, A. Lécuyer, F. Lamarche, and B. Arnaldi, “A review of classification algorithms for EEG-based brain-computer interfaces,” Journal of Neural Engineering, vol. 4, no. 2, pp. R1–R13, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. C.-C. Chang and C.-J. Lin, “LIBSVM: a library for support vector machines,” Software, 2001, http://www.csie.ntu.edu.tw/~cjlin/libsvm/.
  31. M. Sokolova, N. Japkowicz, and S. Szpakowicz, Beyond Accuracy, F-Score and ROC: A Family of Discriminant Measures for Performance Evaluation, Springer, Berlin, Germany, 2006.
  32. A. Satti, D. Coyle, and G. Prasad, “Continuous EEG classification for a self-paced BCI,” in Proceedings of the 4th International IEEE/EMBS Conference on Neural Engineering (NER'09), pp. 315–318, Antalya, Turkey, May 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. J. D. Gibbons, Nonparametric Statistical Inference, Marcel Dekker, New York, NY, USA, 1985.
  34. M. Hollander and D. A. Wolfe, Nonparametric Statistical Methods, John Wiley & Sons, Hoboken, NJ, USA, 1999.