- About this Journal ·
- Abstracting and Indexing ·
- Aims and Scope ·
- Article Processing Charges ·
- Articles in Press ·
- Author Guidelines ·
- Bibliographic Information ·
- Citations to this Journal ·
- Contact Information ·
- Editorial Board ·
- Editorial Workflow ·
- Free eTOC Alerts ·
- Publication Ethics ·
- Reviewers Acknowledgment ·
- Submit a Manuscript ·
- Subscription Information ·
- Table of Contents

Advances in High Energy Physics

Volume 2012 (2012), Article ID 475460, 14 pages

http://dx.doi.org/10.1155/2012/475460

## Kerr-Taub-NUT General Frame, Energy, and Momentum in Teleparallel Equivalent of General Relativity

^{1}Mathematics Department, Faculty of Science, King Faisal University, P.O. Box 380, Al-Ahsaa 31982, Saudi Arabia^{2}Mathematics Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt^{3}Center for Theoretical Physics, British University of Egypt, P.O. Box 43, Sherouk City 11837, Egypt^{4}Egyptian Relativity Group (ERG), Egypt

Received 29 December 2011; Revised 16 March 2012; Accepted 1 April 2012

Academic Editor: A. Petrov

Copyright © 2012 Gamal G. L. Nashed. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

#### Linked References

- M. Demiański and E. T. Newman, “Algebraically special of Petrov type II with repeated principal null vector P,”
*Bulletin de l'Académie Polonaise des Sciences*, vol. 14, p. 653, 1966. - L. D. Landau and E. M. Lifshitz,
*The Classical Theory of Fields*, Pergamon Press, Oxford, UK, 1980. - M. Dubois-Violette and J. Madore, “Conservation laws and integrability conditions for gravitational and Yang-Mills field equations,”
*Communications in Mathematical Physics*, vol. 108, no. 2, pp. 213–223, 1987. - J. Frauendiener, “Geometric description of energy-momentum pseudotensors,”
*Classical and Quantum Gravity*, vol. 6, no. 12, pp. L237–L241, 1989. - T. Ortín,
*Gravity and Strings*, Cambridge University Press, Cambridge, UK, 2004. - C. Møller, “Tetrad fields and conservation laws in general relativity,” in
*Proceedings of the International School of Physics Enrico Fermi*, C. Mlle, Ed., Academic Press, London, UK, 1962. - C. Møller, “Conservation laws in the tetrad theory of gravitation,” in
*Proceedings of the Conference on Theory of Gravitation, Warszawa and Jablonna, 1962*, vol. 136 of*NORDITA Publications*, Gauthier-Villars, Paris, France, PWN-Polish Scientific Publishers, Warsaw, Poland, 1964. - C. Pellegrini and J. Plebański, “Tetrad fields and gravitional fields,”
*Matematisk-Fysiske Skrifter udg. af det Kongelige Danske Videnskabernes Selskab*, vol. 2, no. 4, 1963. - T. G. Lucas, Y. N. Obukhov, and J. G. Pereira, “Regularizing role of teleparallelism,”
*Physical Review D*, vol. 80, no. 6, article 064043. - F. W. Hehl, “Poincare gauge field theory,” in
*Proceedings of the 6th School of Cosmology and Gravitation on Spin, Torsion, Rotation and Supergravity, Erice, Italy, 1979*, P. G. Bergmann and V. de Sabbata, Eds., Plenum, New York, NY, USA, 1980. - K. Hayashi, “The gauge theory of the translation group and underlying geometry,”
*Physics Letters B*, vol. 69, no. 4, pp. 441–444, 1977. - K. Hayashi and T. Shirafuji, “New general relativity,”
*Physical Review D*, vol. 19, no. 12, pp. 3524–3553, 1979. - K. Hayashi and T. Shirafuji, “Addendum to “new general relativity”,”
*Physical Review D*, vol. 24, no. 12, pp. 3312–3314, 1981. - M. Blagojević and M. Vasilić, “Asymptotic symmetry and conserved quantities in the Poincare gauge theory of gravity,”
*Classical and Quantum Gravity*, vol. 5, no. 9, pp. 1241–1257, 1988. - T. Kawai, “Energy-momentum and angular momentum densities in gauge theories of gravity,”
*Physical Review D*, vol. 62, no. 10, article 104014, pp. 1–9, 2000. - T. Kawai, K. Shibata, and I. Tanaka, “Generalized equivalence principle in extended new general relativity,”
*Progress of Theoretical Physics*, vol. 104, no. 3, pp. 505–530, 2000. - J. W. Maluf, J. F. DaRocha-Neto, T. M. L. Toribio, and K. H. Castello-Branco, “Energy and angular momentum of the gravitational field in the teleparallel geometry,”
*Physical Review D*, vol. 65, no. 12, Article ID 124001, 2002. View at Publisher · View at Google Scholar · View at Scopus - R. Arnowitt, S. Deser, and C. W. Misner, “The dynamics of general relativity,” in
*Gravitation: An Introduction to Current Research*, L. Witten, Ed., chapter 7, p. 227, Wiley, New York, NY, USA, 1962. - J. W. Maluf, “Hamiltonian formulation of the teleparallel description of general relativity,”
*Journal of Mathematical Physics*, vol. 35, no. 1, pp. 335–343, 1994. - J. W. Maluf and S. C. Ulhoa, “On the gravitational angular momentum of rotating sources,”
*General Relativity and Gravitation*, vol. 41, no. 6, pp. 1233–1247, 2009. View at Publisher · View at Google Scholar · View at Scopus - N. Toma, “A Kerr metric solution in new general relativity,”
*Progress of Theoretical Physics*, vol. 86, p. 659, 1991. - M. Ahmed and S. M. Hossain, “Energy localization in curved spacetime,”
*Progress of Theoretical Physics*, vol. 93, p. 901, 1995. - G. G. L. Nashed, “Reissner-Nordström solutions and energy in teleparallel theory,”
*Modern Physics Letters A*, vol. 21, no. 29, pp. 2241–2250, 2006. - A. A. Sousa, R. B. Pereira, and J. F. da Rocha-Neto, “Angular momentum of the BTZ black hole in the teleparallel geometry,”
*Progress of Theoretical Physics*, vol. 114, no. 6, pp. 1179–1190, 2006. - F. Gronwald, “Metric-affine gauge theory of gravity I. Fundamental structure and field equations,”
*International Journal of Modern Physics D*, vol. 6, no. 3, pp. 263–303, 1997. - Y. M. Cho, “Einstein Lagrangian as the translational Yang-Mills Lagrangian,”
*Physical Review D*, vol. 14, no. 10, pp. 2521–2525, 1976. - U. Muench,
*U ber teleparallele Gravitationstheorien*, Diploma thesis, University of Cologne, 1997. - R. Tresguerres, “Translations and dynamics,”
*International Journal of Geometric Methods in Modern Physics*, vol. 5, no. 6, pp. 905–946, 2008. - Yu. N. Obukhov and J. G. Pereira, “Metric-affine approach to teleparallel gravity,”
*Physical Review D*, vol. 67, no. 4, article 044016, 2003. - Yu. N. Obukhov and J. G. Pereira, “Lessons of spin and torsion: reply to ‘Consistent coupling to Dirac fields in teleparallelism’,”
*Physical Review D*, vol. 69, no. 12, article 128502, 2004. - Yu. N. Obukhov, G. F. Rubilar, and J. G. Pereira, “Conserved currents in gravitational models with quasi-invariant Lagrangians: application to teleparallel gravity,”
*Physical Review D*, vol. 74, no. 10, article 104007, 2006. - D. Puetzfeld, “An exact-plane fronted wave solution in metric-affine gravity,” in
*Exact Solutions and Scalar Field in Gravity: Recent Developments*, A. Macías, J. Cervantes-Cota, and C. Lämmerzahl, Eds., pp. 141–151, Kluwer, Dordrecht, The Netherlands, 2001. - A. García, A. Macías, D. Puetzfeld, and J. Socorro, “Plane-fronted waves in metric-affine gravity,”
*Physical Review D*, vol. 62, no. 4, article 044021, pp. 1–7, 2000. - A. D. King and D. Vassiliev, “Torsion waves in metric-affine field theory,”
*Classical and Quantum Gravity*, vol. 18, no. 12, pp. 2317–2329, 2001. View at Publisher · View at Google Scholar · View at Scopus - V. Pasic and D. Vassiliev, “Pp-waves with torsion and metric-affine gravity,”
*Classical and Quantum Gravity*, vol. 22, no. 19, pp. 3961–3975, 2005. View at Publisher · View at Google Scholar · View at Scopus - D. Vassiliev, “Pseudoinstantons in metric-affine field theory,”
*General Relativity and Gravitation*, vol. 34, no. 8, pp. 1239–1265, 2002. - D. Vassiliev, “Quadratic metric-affine gravity,”
*Annalen der Physik*, vol. 14, no. 4, pp. 231–252, 2005. View at Publisher · View at Google Scholar · View at Scopus - Yu. N. Obukhov, “Dirac fermions in strong gravitational fields,”
*Physical Review D*, vol. 73, no. 2, article 024025, 2006. - Yu. N. Obukhov, “Poincaré gauge gravity: selected topics,”
*International Journal of Geometric Methods in Modern Physics*, vol. 3, no. 1, pp. 95–137, 2006, http://www.worldscinet.com/ijgmmp/. - G. G. L. Nashed, “Energy and momentum of a spherically symmetric dilaton frame as regularized by teleparallel gravity,”
*Annals of Physics*, vol. 523, no. 6, p. 450, 2011. - Yu. N. Obukhov and G. F. Rubilar, “Covariance properties and regularization of conserved currents in tetrad gravity,”
*Physical Review D*, vol. 73, no. 12, article 124017, 2006.