Abstract

We present a detailed analysis of a class of extensions to the SM Gauge chiral symmetry π‘†π‘ˆ(3)πΆΓ—π‘†π‘ˆ(3)πΏΓ—π‘ˆ(1)π‘₯ (331 model), where the neutrino electroweak interaction with matter via charged and neutral current is modified through new gauge bosons of the model. We found the connections between the nonstandard contributions on 331 model with nonstandard interactions. Through limits of such interactions in cross-section experiments, we constrained the parameters of the model, obtaining that the new energy scale of this theory should obey 𝑉>1.3 TeV and the new bosons of the model must have masses greater than 610 GeV.

1. Introduction

Although the standard model (SM) is a good phenomenological theory, describing very well all experimental results, it leaves several unanswered questions that suggest that the SM might be an effective model at low energies, originating from a more fundamental theory. Some of the unexplained aspects in the SM are the existence of three families and lepton flavour violation observed in solar [1–5], atmospheric [6–11], and reactor [12–17] neutrino experiments. These results demonstrate that new physics is required, being interpreted as a sign of physics beyond the SM.

In principle neutrinos new interactions not described by Standard Model can arise in extensions of the SM. We assume that the new physics which induces the nonstandard neutrino interactions (NSIs) [18–29] arises in some models enlarging the symmetry group where the SM is embedded. Models with larger symmetries that may allow us to understand the origin of the families have been proposed [30–34]. In some models, it is also possible to understand the number of families from the cancellation of chiral anomalies, necessary to preserve the renormalizability of the theory [35–37]. This is the case of the π‘†π‘ˆ(3)πΆβŠ—π‘†π‘ˆ(3)πΏβŠ—π‘ˆ(1)𝑋 or 331 models, which are an immediate extension of the SM [38–46]. There are a great variety of such models, which have generated new expectations and possibilities of solving several problems of the SM.

Our goal is to investigate how NSI with matter can be induced by new physics generated by 331 models. Through the constraints from neutrino elastic scattering experiments on this NSI parameters, we can constrain some values expected for 331 model parameters. We find that the constraints on vacuum expectation values of the model, as well as for the mass of the new bosons, are in full agreement with the limits found in the literature, which makes this class of models a viable theory for a higher energy level.

The paper is organized as follows. In Section 2 we briefly review NSI and present how new interactions can contribute to new matter effects, in addition to the SM electroweak ones. In Section 3 we introduce a specific 331 model and we give the fermion gauge-boson couplings. In Section 4 we calculate the interactions involving neutrinos and how these interactions can be interpreted as new terms beyond SM. Finally, in Section 5 we summarize our main results.

2. Nonstandard Neutrino Interactions

One convenient way to describe neutrino new interactions with matter in the electro-weak (EW) broken phase are the so-called nonstandard neutrino interactions (NSIs), which is a very widespread and convenient way of parameterizing the effects of new physics in neutrino oscillations [18–29]. NSIs with first generation of leptons and quarks for four-fermion operators are contained in the following Lagrangian density [18–22, 24, 25, 28]: β„’NSIeff=βˆ’2√2𝐺𝐹𝑓,π‘ƒπœ€π‘“π‘ƒπ›Όπ›½ξ‚ƒπ‘“π›Ύπœ‡π‘ƒπ‘“ξ‚„ξ€Ίπœˆπ›Όπ›Ύπœ‡πΏπœˆπ›½ξ€»,(2.1) where 𝐺𝐹 is the Fermi constant, 𝑓=𝑒,𝑑,𝑒, and 𝑃=𝐿,𝑅 with 2𝐿=(1βˆ’π›Ύ5),2𝑅=(1+𝛾5), and the coefficients πœ€π‘“π‘ƒπ›Όπ›½ encode the deviation from standard interactions between neutrinos of flavor 𝛼 with component 𝑃-handed of fermions 𝑓, resulting in a neutrinos of flavor 𝛽. Then, the neutrino oscillations in the presence of nonstandard matter effects can be described by an effective Hamiltonian, parameterized as 𝐻=12πΈβŽ‘βŽ’βŽ’βŽ’βŽ’βŽ£π‘ˆβŽ›βŽœβŽœβŽœβŽœβŽ0000Ξ”π‘š221000Ξ”π‘š231βŽžβŽŸβŽŸβŽŸβŽŸβŽ π‘ˆβ€ +π‘ŽβŽ›βŽœβŽœβŽœβŽœβŽ1+πœ€π‘’π‘’πœ€π‘’πœ‡πœ€π‘’πœπœ€βˆ—π‘’πœ‡πœ€πœ‡πœ‡πœ€πœ‡πœπœ€βˆ—π‘’πœπœ€βˆ—πœ‡πœπœ€πœπœβŽžβŽŸβŽŸβŽŸβŽŸβŽ βŽ€βŽ₯βŽ₯βŽ₯βŽ₯⎦,(2.2) where π‘Ž=√2𝐺𝐹𝑛𝑓, 𝐸 is the neutrino energy and πœ€π›Όπ›½=βˆ‘π‘“,π‘ƒπœ€π‘“π‘ƒπ›Όπ›½π‘›π‘“/𝑛𝑒 with 𝑛𝑒 and 𝑛𝑓 the electrons and fermions 𝑓 density in the medium, respectively. These parameters πœ€π›Όπ›½ can be found in solar [22, 47], atmospheric [20, 48], accelerator [18, 19, 22, 49], and cross-section [18, 19, 21, 50, 51] neutrino data experiment.

We focus on cross-section neutrino experiment, where at low energies the standard differential cross-section for πœˆπ›Όπ‘’β†’πœˆπ›Όπ‘’ scattering processes has the well-know form: π‘‘πœŽπ›Όπ‘‘π‘‡=2πΊπΉπ‘šπ‘’πœ‹ξ‚Έξ€·π‘”π›Ό1ξ€Έ2+𝑔𝛼2ξ€Έ2ξ‚΅1βˆ’π‘‡πΈπœˆξ‚Ά2βˆ’π‘”π›Ό1𝑔𝛼2π‘šπ‘’π‘‡πΈ2πœˆξ‚Ή,(2.3) where π‘šπ‘’ is the electron mass, 𝐸𝜈 is the incident neutrino energy, and 𝑇𝑒 is the electron recoil energy. The quantities 𝑔𝛼1 and 𝑔𝛼2 are related to the SM neutral current couplings of the electron 𝑔𝑒𝐿=βˆ’1/2+sin2πœƒπ‘Š and 𝑔𝑒𝑅=sin2πœƒπ‘Š, with sin2πœƒπ‘Š=0,23119. For πœˆπœ‡,𝜏 neutrinos, which take part only in neutral current interactions, we have π‘”πœ‡,𝜏1=𝑔𝑒𝐿 and π‘”πœ‡,𝜏2=𝑔𝑒𝑅 while for electron neutrinos, which take part in both charge current (CC) and neutral current (NC) interactions, 𝑔𝑒1=1+𝑔𝑒𝐿,𝑔𝑒2=𝑔𝑒𝑅. In the presence of nonuniversal standard interaction, the cross-section can be written in the same form of (2.3) but with 𝑔𝛼1,2 replaced by the effective nonstandard couplings ̃𝑔𝛼1=𝑔𝛼1+πœ€π‘’πΏπ›Όπ›Ό and ̃𝑔𝛼2=𝑔𝛼2+πœ€π‘’π‘…π›Όπ›Ό, leading to the following differential scattering cross-section [19, 21, 50, 51] π‘‘πœŽπ›Όπ‘‘π‘‡=2πΊπΉπ‘šπ‘’πœ‹ξ‚»ξ€·π‘”π›Ό1+πœ€π‘’πΏπ›Όπ›Όξ€Έ2+𝑔𝛼2+πœ€π‘’π‘…π›Όπ›Όξ€Έ2ξ‚΅1βˆ’π‘‡π‘’πΈπœˆξ‚Ά2βˆ’ξ€·π‘”π›Ό1+πœ€π‘’πΏπ›Όπ›Όξ€Έξ€·π‘”π›Ό2+πœ€π‘’π‘…π›Όπ›Όξ€Έπ‘šπ‘’π‘‡π‘’πΈπœˆξ‚Ό.(2.4)

3. 331 Model

The success of the standard model (SM) implies that any new theory should contain the symmetry π‘†π‘ˆ(3)πΆβŠ—π‘†π‘ˆ(2)πΏβŠ—π‘ˆ(1)π‘Œ(𝐺321) in a low energy limit. Then, it is natural that one possible modification of SM involves extensions of the representation content in matter and Higgs sector, leading to extension of symmetry group 𝐺321 to groups π‘†π‘ˆ(𝑁𝐢)πΆβŠ—π‘†π‘ˆ(π‘š)πΏβŠ—π‘ˆ(1)𝑋 with π‘†π‘ˆ(𝑁𝐢)πΆβŠ—π‘†π‘ˆ(π‘š)πΏβŠ—π‘ˆ(1)π‘‹βŠƒπΊ321.

In early 90’s, Pisano and Pleitez [38, 39] and Frampton [40] suggested an extension of the symmetry group π‘†π‘ˆ(2)πΏβŠ—π‘ˆ(1)π‘Œ of electroweak sector to a group π‘†π‘ˆ(3)πΏβŠ—π‘ˆ(1)𝑋, that is, with 𝑁𝐢=π‘š=3. The 331 models present some interesting features; for instance, they associate the number of families to internal consistence of the theory, preserving asymptotic freedom.

In these models, the SM doublets are part of triplets. In quark sector three new quarks are included to build the triplets, while in lepton sector we can use the right-handed neutrino to such role [38, 40]. Another option is to invoke three new heavy leptons, charged or not, depending on the choice of charge operator [41, 42]. In SM the electric charge operator is constructed as a combination of diagonal generators of π‘†π‘ˆ(2)βŠ—π‘ˆ(1)π‘Œ. Then, it is natural to assume that this operator in π‘†π‘ˆ(3)πΏβŠ—π‘ˆ(1)𝑋 is defined in the same way. The most general charge operator in π‘†π‘ˆ(3)πΏβŠ—π‘ˆ(1)𝑋 is a linear superposition of diagonal generators of symmetry groups, given by π’¬β‰‘π‘Žπ‘‡3𝐿+2√3𝑏𝑇8𝐿+𝑋𝐼3,(3.1) where the group generator is defined as π‘‡π‘–πΏβ‰‘πœ†π‘–πΏ/2 with πœ†π‘–πΏ, 𝑖=1,…,8, being the Gell-Mann matrices for π‘†π‘ˆ(3)𝐿, where the normalization chosen is Tr(πœ†π‘–πΏπœ†π‘—πΏ)=2𝛿𝑖𝑗 and 𝐼3=diag(1,1,1) is the identity matrix, and π‘Ž and 𝑏 are two parameters to be determined. Then the charge operator in (3.1) acts on the representations 3 and 3* of π‘†π‘ˆ(3)𝐿 having the following form: 𝒬[3]=diagξ‚ƒπ‘Ž2+𝑏3+𝑋,βˆ’π‘Ž2+𝑏3+𝑋,βˆ’2𝑏3+𝑋,(3.2)𝒬3βˆ—ξ€»=diagξ‚ƒβˆ’π‘Ž2βˆ’π‘3+𝑋,+π‘Ž2βˆ’π‘3+𝑋,+2𝑏3+𝑋,(3.3) where we have two free parameters to obtain the charge of fermions, π‘Ž and 𝑏 (𝑋 can be determined by anomalies cancellation). However, π‘Ž=1 is necessary to obtain doublets of isospins π‘†π‘ˆ(2)βŠ—π‘ˆ(1)π‘Œ correctly incorporated in the model π‘†π‘ˆ(3)πΏβŠ—π‘ˆ(1)𝑋 [41, 42, 45]. Then we can vary 𝑏 to create different models in 331 context, being a signature that differentiates such models. For 𝑏=βˆ’3/2, we have the original 331 model [38, 39].

To have local gauge invariance, we have the following covariant derivative: π·πœ‡=πœ•πœ‡βˆ’π‘–(𝑔/2)πœ†π›Όπ‘Šπ›Όπœ‡βˆ’π‘–π‘”π‘₯π‘‹π΅πœ‡ and a total of 17 mediator bosons: one field π΅πœ‡ associated with π‘ˆ(1)𝑋, eight fields associated with π‘†π‘ˆ(3)𝐢, and another eight fields associated with π‘†π‘ˆ(3)𝐿, written in the following form: π–πœ‡β‰‘π‘Šπ›Όπœ‡πœ†π›Ό=βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽπ‘Š3πœ‡+1√3π‘Š8πœ‡βˆš2π‘Š+πœ‡βˆš2𝐾𝒬1πœ‡βˆš2π‘Šβˆ’πœ‡βˆ’π‘Š3πœ‡+1√3π‘Š8πœ‡βˆš2𝐾𝒬2πœ‡βˆš2πΎβˆ’π’¬1πœ‡βˆš2πΎβˆ’π’¬2πœ‡βˆ’2√3π‘Š8πœ‡βŽžβŽŸβŽŸβŽŸβŽŸβŽŸβŽŸβŽ ,(3.4) where π‘ŠΒ±πœ‡=1√2ξ€·π‘Š1πœ‡βˆ“π‘–π‘Š2πœ‡ξ€Έ,𝐾±𝒬1πœ‡=1√2ξ€·π‘Š4πœ‡βˆ“π‘–π‘Š5πœ‡ξ€Έ,𝐾±𝒬2πœ‡=1√2ξ€·π‘Š6πœ‡βˆ“π‘–π‘Š7πœ‡ξ€Έ.(3.5) Therefore, charge operator in (3.2) applied over (3.4) leads to 𝒬1=1/2+𝑏 and 𝒬2=(βˆ’1/2)+𝑏. Then the mediator bosons will have integer electric charge only if 𝑏=Β±1/2,Β±3/2,Β±5/2,…,Β±(2𝑛+1)/2,𝑛=0,1,2,3,…. A detailed analysis shows that if π‘Ž and 𝑏 are associated with the fundamental representation 3, then βˆ’π‘Ž and βˆ’π‘ will be associated with antisymmetric representation 3βˆ—.

3.1. The Representation Content

There are many representations for the matter content [46], for instance, 𝑏=3/2 [38]. But we note that if we accommodate the doublets of π‘†π‘ˆ(2)𝐿 in the superior components of triplets and antitriplets of π‘†π‘ˆ(3)𝐿, and if we forbid exotic charges for the new fermions, we obtain from (3.2) the constrain 𝑏=Β±1/2 (assuming π‘Ž=1). Since a negative value of 𝑏 can be associated to the antitriplet, we obtain that 𝑏=1/2 is a necessary and sufficient condition to exclude exotic electric charges in fermion and boson sector [41].

The fields left- and right-handed components transform under π‘†π‘ˆ(3)𝐿 as triplets and singlets, respectively. Therefore the theory is chiral and can present anomalies of Alder-Bell-Jackiw [52, 53]. In a non-abelian theory, in the fermionic representation β„›, the divergent anomaly is given by π’œπ‘Žπ‘π‘βˆξ“β„›Trξ€Ίξ€½π‘‡π‘ŽπΏ(β„›),𝑇𝑏𝐿(β„›)𝑇𝑐𝐿(β„›)βˆ’ξ€½π‘‡π‘Žπ‘…(β„›),𝑇𝑏𝑅(β„›)𝑇𝑐𝑅(β„›)ξ€»,(3.6) where π‘‡π‘Ž(β„›) are the matrix representations for each group generator acting on the basis β„› with helicity left or right. Therefore, to eliminate the pure anomaly [π‘†π‘ˆ(3)𝐿]3, we should have that π’œπ‘Žπ‘π‘βˆβˆ‘β„›ξ…žTr[{π‘‡π‘ŽπΏ(β„›β€²),𝑇𝑏𝐿(β„›β€²)}𝑇𝑐𝐿(β„›β€²)]=0. We use the fact that π‘†π‘ˆ(3)𝐿 has two fundamental representations, 3 and 3βˆ—, then its generators should be associated to π‘‡π‘Ž and π‘‡π‘Žβˆ—, respectively, that is, ξ“β„›ξ…žTrξ€Ίξ€½π‘‡π‘ŽπΏξ€·β„›ξ…žξ€Έ,π‘‡π‘πΏξ€·β„›ξ…žξ€Έξ€Ύπ‘‡π‘πΏξ€·β„›ξ…žξ€Έξ€»=ℛTrξ€Ίξ€½π‘‡π‘ŽπΏ(β„›),𝑇𝑏𝐿(β„›)𝑇𝑐𝐿(β„›)ξ€»βˆ’ξ“β„›βˆ—Trξ€Ίξ€½π‘‡π‘Žβˆ—πΏξ€·β„›βˆ—ξ€Έ,π‘‡π‘βˆ—πΏξ€·β„›βˆ—ξ€Έξ€Ύπ‘‡π‘βˆ—πΏξ€·β„›βˆ—ξ€Έξ€»,(3.7) but we know that the matrix representations for each group generator satisfies that π‘‡π‘Žβˆ—πΏ(β„›βˆ—)=βˆ’π‘‡π‘ŽπΏ(β„›) [54]. So, we can see that for the anomalies to be canceled, the number of fields that transform as triplets (first term in equation above) and antitriplets under π‘†π‘ˆ(3)𝐿 has to be the same; that is, two triplets quark families Γ— 3 (color) = one antitriplet quark family Γ— 3 (color) + 3 antitriplet lepton families. This implies that two families of quarks should transform differently than the third family, as will be discussed in next paragraph.

Usually the third quark family is chosen to transform in a different way than the first two families. But we will assume that the first family transform differently, to address the fact that π‘šπ‘’<π‘šπ‘‘,π‘šπœˆβ„“<π‘šβ„“ while π‘šπ‘β‰«π‘šπ‘  and π‘šπ‘‘β‰«π‘šπ‘. To state this in a clearer way, we recall that in SM the π‘†π‘ˆ(2)𝐿 doublets are (πœˆβ„“,β„“)𝑇,(𝑒,𝑑)𝑇,(𝑐,𝑠)𝑇,(𝑑,𝑏)𝑇, with β„“=𝑒,πœ‡,𝜏. We can see that the first component of leptons doublets and first quark family is lighter than the second component. But for the second and third quark families, the opposite occurs. Then we use this idea to justify that first quark family transform as leptons.

3.2. Minimal 331 Model on Scalar Sector

Among the different possibilities of 331 models, we will present a detailed study on a minimal model on scalar sector without exotic electric charges for quarks and with three new leptons without charged [41] (𝑏=1/2), where the fermions present the following transformation structure under π‘†π‘ˆ(3)πΆβŠ—π‘†π‘ˆ(3)πΏβŠ—π‘ˆ(1)𝑋: πœ“β„“πΏ=ξ€·β„“βˆ’,πœˆβ„“,𝑁0β„“ξ€Έπ‘‡πΏβˆΌξ‚€1,3βˆ—,βˆ’13,πœˆβ„“π‘…βˆΌ(1,1,0),β„“βˆ’π‘…βˆΌ(1,1,βˆ’1),𝑁0β„“π‘…βˆΌ(1,1,0),𝑄1𝐿=𝑑,𝑒,π‘ˆ1ξ€Έπ‘‡πΏβˆΌξ‚€3,3βˆ—,13,π‘’π‘–π‘…βˆΌξ‚€3,1,23,π‘‘π‘–π‘…βˆΌξ‚€3,1,βˆ’13,π‘ˆ1π‘…βˆΌξ‚€3,1,23,π‘„π‘ŽπΏ=ξ€·π‘’π‘Ž,π‘‘π‘Ž,π·π‘Žξ€Έπ‘‡πΏβˆΌ(3,3,0),π·π‘Žπ‘…βˆΌξ‚€3,1,βˆ’13,(3.8) where 𝑖=1,2,3,β„“=𝑒,πœ‡,𝜏,π‘Ž=2,3. We note that the leptons multiplets πœ“β„“πΏ consist of three fields β„“={𝑒,πœ‡,𝜏}, the corresponding neutrinos πœˆβ„“={πœˆπ‘’,πœˆπœ‡,𝜈𝜏}, and new neutral leptons 𝑁0β„“={𝑁0𝑒,𝑁0πœ‡,𝑁0𝜏}. We can also see that the multiplet associated with the first quark family 𝑄1𝐿 consists of down and up quarks and a new quark with the same electric charge of quark up (named π‘ˆ1), while the multiplet associated with second (third) family π‘„π‘ŽπΏ consists of SM quarks of second (third) family and a new quark with the same electric charge of down quark (named 𝐷2 (𝐷3)). The numbers on parenthesis refer to the transformation properties under π‘†π‘ˆ(3)𝐢,π‘†π‘ˆ(3)𝐿, and π‘ˆ(1)𝑋, respectively. With this choice, the anomalies are cancelled in a nontrivial way [55], and asymptotic freedom is guaranteed [56–59].

3.2.1. Scalar Sector and the Yukawa Couplings

The scalar fields have to be coupled to fermions by the Yukawa terms, invariants under π‘†π‘ˆ(3)π‘βŠ—π‘†π‘ˆ(3)πΏβŠ—π‘ˆ(1)𝑋. In lepton sector, these couplings can be written as πœ“β„“πΏβ„“π‘…βˆΌξ‚€1,3,13ξ‚βŠ—(1,1,βˆ’1)=ξ‚€1,3,βˆ’23ξ‚ξ„Ώξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…ƒξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…ŒπœŒβˆ—,πœ“β„“πΏπœˆβ„“π‘…βˆΌξ‚€1,3,13ξ‚βŠ—(1,1,0)=ξ‚€1,3,13ξ‚ξ„Ώξ…€ξ…€ξ…€ξ…€ξ…ƒξ…€ξ…€ξ…€ξ…€ξ…Œπœ‚,πœ“β„“πΏπ‘0β„“π‘…βˆΌξ‚€1,3,13ξ‚βŠ—(1,1,0)=ξ‚€1,3,13ξ‚ξ„Ώξ…€ξ…€ξ…€ξ…€ξ…ƒξ…€ξ…€ξ…€ξ…€ξ…Œπœ’,(3.9) and writing only three terms in quarks sector, for example, 𝑄1𝐿𝑒𝑖𝑅=ξ‚€3βˆ—,3,βˆ’13ξ‚βŠ—ξ‚€3,1,23=ξ‚€1,3,13ξ‚ξ„Ώξ…€ξ…€ξ…€ξ…€ξ…ƒξ…€ξ…€ξ…€ξ…€ξ…Œπœ’βŠ•ξ‚€8,3,13ξ‚ξ„Ώξ…€ξ…€ξ…€ξ…€ξ…ƒξ…€ξ…€ξ…€ξ…€ξ…ŒColorHiggs,𝑄1𝐿𝑑𝑖𝑅=ξ‚€3βˆ—,3,βˆ’13ξ‚βŠ—ξ‚€3,1,βˆ’13=ξ‚€1,3,βˆ’23ξ‚ξ„Ώξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…ƒξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…ŒπœŒβˆ—βŠ•β€¦,π‘„π‘ŽπΏπ‘‘π‘–π‘…=ξ€·3βˆ—,3βˆ—,0ξ€ΈβŠ—ξ‚€3,1,βˆ’13=ξ‚€1,3βˆ—,βˆ’13ξ‚ξ„Ώξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…ƒξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…€ξ…Œπœ‚βˆ—βŠ•β€¦,….(3.10) As usual in these class of models, we impose colorless Higgs (i.e., selecting only the multiplets that transform as singlets under π‘†π‘ˆ(3)𝐢). We note that we need only three Higgs multiplets, 𝜌,πœ’, and πœ‚, to couple the different fermionic fields and generate mass through spontaneous symmetry breaking. In (3.9) and (3.10) we note that quantum numbers of triplets πœ’ and πœ‚ are the same, which leads us to consider models with two or three Higgs triplets. We will adopt the first option, two Higgs triplets, due to the simpler scalar sector in comparison with the scenario with three triplets [41–44].

3.3. Model with Two Higgs Triplets

For the models with two Higgs triplets, we obtain (note that in this model we assumed Ξ¦1=πœ’,πœ‚ e Ξ¦2=𝜌) Ξ¦1=ξ‚€πœ™βˆ’1,πœ™ξ…ž01,πœ™01ξ‚π‘‡βˆΌξ‚€1,3βˆ—,βˆ’13,Ξ¦2=ξ€·πœ™02,πœ™+2,πœ™ξ…ž+2ξ€Έπ‘‡βˆΌξ‚€1,3βˆ—,23.(3.11) Assuming the following choice to the Higgs triplets vacuum expectation value (VEV) [41] ⟨Φ1⟩0=(0,πœ—1,𝑉)𝑇 and ⟨Φ2⟩0=(πœ—2,0,0)𝑇, we associate 𝑉 with the mass of the new fermions, which lead us to assume π‘‰β‰«πœ—1,πœ—2. We expand the scalar VEVs in the following way: πœ™01=𝑉+𝐻0πœ™1+𝑖𝐴0πœ™1√2,πœ™ξ…ž01=πœ—1+π»ξ…ž0πœ™1+π‘–π΄ξ…ž0πœ™1√2,πœ™02=πœ—2+𝐻0πœ™2+𝑖𝐴0πœ™2√2.(3.12) The real (imaginary) part π»πœ™π‘–(π΄πœ™π‘–) is usually called CP-even (CP-odd) scalar field. The most general potential can be written as 𝑉Φ1,Ξ¦2ξ€Έ=πœ‡21Φ†1Ξ¦1+πœ‡22Φ†2Ξ¦2+πœ†1Φ†1Ξ¦12+πœ†2Φ†2Ξ¦22+πœ†3Φ†1Ξ¦1Φ†2Ξ¦2+πœ†4Φ†1Ξ¦2Φ†2Ξ¦1.(3.13) Demanding that in the displaced potential 𝑉(Ξ¦1,Ξ¦2) the linear terms on the field should be absent, we have, in tree-level approximation, the following constraints: πœ‡21+2πœ†1ξ€·πœ—21+𝑉2ξ€Έ+πœ†3πœ—22=0,πœ‡22+πœ†3ξ€·πœ—21+𝑉2ξ€Έ+2πœ†2πœ—22=0.(3.14) The analysis of such equations shows that they are related to a minimum in scalar potential with the value 𝑉min=βˆ’πœ—42πœ†2βˆ’(πœ—21+𝑉2)[(πœ—21+𝑉2)πœ†1+πœ—22πœ†3]. Then, replacing (3.12) and (3.14) in (3.13), we can calculate the mass matrix in (𝐻0πœ™1,𝐻0πœ™2,π»ξ…ž0πœ™1) basis through the relation 𝑀2𝑖𝑗=2(πœ•2𝑉(Ξ¦1,Ξ¦2)/πœ•π»0Ξ¦π‘–πœ•π»0Φ𝑗), obtaining 𝑀2𝐻=2βŽ›βŽœβŽœβŽœβŽœβŽ2πœ†1𝑉2πœ†3πœ—2𝑉2πœ†1πœ—1π‘‰πœ†3πœ—2𝑉2πœ†2πœ—22πœ†3πœ—1πœ—22πœ†1πœ—1π‘‰πœ†3πœ—1πœ—22πœ†1πœ—21⎞⎟⎟⎟⎟⎠.(3.15) Since (3.15) has vanishing determinant, we have one Goldstone boson 𝐺1 and two massive neutral scalar fields 𝐻1 and 𝐻2 with masses (note that if πœ†23=4πœ†1πœ†2, we obtain two Goldstone bosons, 𝐺1 and 𝐻2, and a massive scalar field 𝐻1 with mass 𝑀2𝐻1=4[πœ†1(πœ—21+𝑉2)+πœ†2πœ—22], where πœ†1πœ†2>0; then imposing 𝑀2𝐻1>0 leads to πœ†1>0 and πœ†2>0) 𝑀2𝐻1,𝐻2=2πœ†1ξ€·πœ—21+𝑉2ξ€Έ+2πœ†2πœ—22Β±2ξ”ξ€Ίπœ†1ξ€·πœ—21+𝑉2ξ€Έ+πœ†2πœ—22ξ€»2+πœ—22ξ€·πœ—21+𝑉2ξ€Έξ€·πœ†23βˆ’4πœ†1πœ†2ξ€Έ,(3.16) where real values for πœ†β€™s produce positive mass to neutral scalar fields only if πœ†1>0 and 4πœ†1πœ†2>πœ†23, which implies that πœ†2>0. A detailed analysis shows that when 𝑉(Ξ¦1,Ξ¦2) in (3.13) is expanded around the most general vacuum, given by (3.12) and using constrains in (3.14), we do not obtain pseudoscalar fields 𝐴0Φ𝑖. This allows us do identify three more Goldstone bosons, 𝐺2=𝐴0Ξ¦1,𝐺3=𝐴0Ξ¦2, and 𝐺4=π΄ξ…ž0Ξ¦1. For the mass spectrum in charged scalar sector on (πœ™βˆ’1,πœ™+2,πœ™ξ…ž+2) basis, the mass matrix will be given by 𝑀2+=2πœ†4βŽ›βŽœβŽœβŽœβŽœβŽπœ—22πœ—1πœ—2πœ—2π‘‰πœ—1πœ—2πœ—21πœ—1π‘‰πœ—2π‘‰πœ—1𝑉𝑉2⎞⎟⎟⎟⎟⎠,(3.17) with two eigenvalues equal to zero, equivalent to four Goldstone bosons 𝐺±5,𝐺±6 and two physical charged scalar fields with large masses given by πœ†4(πœ—21+πœ—22+𝑉2), which leads to the constrain πœ†4>0.

This analysis shows that, after symmetry breaking, the original twelve degrees of freedom in scalar sector leads to eight Goldstone bosons (four electrically neutral and four electrically charged), four physical scalar fields, two neutral (one of which being the SM Higgs scalar), and two charged. Eight Goldstone bosons should be absorbed by eight gauge fields as we will see in next section.

3.3.1. Gauge Sector with Two Higgs Triplets

The gauge bosons interaction with matter in electroweak sector appears with the covariant derivative for a matter field πœ‘ as π·πœ‘πœ‡=πœ•πœ‡βˆ’π‘–2π‘”π‘Šπ‘Žπœ‡πœ†π‘ŽπΏβˆ’π‘–π‘”π‘‹π‘‹πœ‘π΅πœ‡=πœ•πœ‡βˆ’π‘–2π‘”β„³πœ‘πœ‡,(3.18) where πœ†π‘ŽπΏ,π‘Ž=1,…,8 are Gell-Mann matrices of π‘†π‘ˆ(3)𝐿 algebra and π‘‹πœ‘ is the charge of abelian factor π‘ˆ(1)𝑋 of the multiplet πœ‘ in which π·πœ‡ acts. The matrix β„³πœ‘πœ‡ contains the gauge bosons with electric charges π‘ž, defined by the generic charge operator in (3.1). For 𝑏=1/2 the matrix β„³πœ‘πœ‡ will have the following form: β„³πœ‘πœ‡=βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽπ‘Š3πœ‡+π‘Š8πœ‡βˆš3+2π‘‘π‘‹πœ‘π΅πœ‡βˆš2π‘Š+πœ‡βˆš2𝐾+πœ‡βˆš2π‘Šβˆ’πœ‡βˆ’π‘Š3πœ‡+π‘Š8πœ‡βˆš3+2π‘‘π‘‹πœ‘π΅πœ‡βˆš2𝐾0πœ‡βˆš2πΎβˆ’πœ‡βˆš2𝐾0πœ‡βˆ’2π‘Š8πœ‡βˆš3+2π‘‘π‘‹πœ‘π΅πœ‡βŽžβŽŸβŽŸβŽŸβŽŸβŽŸβŽŸβŽŸβŽ ,(3.19) where 𝑑=𝑔π‘₯/𝑔 and nonphysical gauge bosons on nondiagonal entries, π‘ŠΒ±πœ‡andπΎΒ±πœ‡, are defined in (3.5) with 𝒬1=1, and 𝐾0πœ‡=1√2ξ€·π‘Š6πœ‡βˆ’π‘–π‘Š7πœ‡ξ€Έ,𝐾0πœ‡=1√2ξ€·π‘Š6πœ‡+π‘–π‘Š7πœ‡ξ€Έ.(3.20) Then for the 331 model we are considering (𝑏=1/2), we have two neutral gauge bosons, 𝐾0πœ‡ and 𝐾0πœ‡, and four charged gauge bosons, π‘ŠΒ±πœ‡ and πΎΒ±πœ‡. The three physical neutral eigenstates will be a linear combination of π‘Š3πœ‡,π‘Š8πœ‡, and π΅πœ‡. After breaking the symmetry with βŸ¨Ξ¦π‘–βŸ©, 𝑖=1,2, and using covariant derivative π·πœ‡=πœ•πœ‡βˆ’(𝑖/2)π‘”β„³πœ‘πœ‡ for the triplets Φ𝑖, we obtain the following masses for the charged physical fields: 𝑀2π‘Šξ…ž=12𝑔2πœ—22,𝑀2πΎξ…ž=12𝑔2ξ€·πœ—21+πœ—22+𝑉2ξ€Έ,(3.21) and the following physical eigenstates: π‘Šξ…žΒ±πœ‡=1ξ”πœ—21+𝑉2ξ€·βˆ’πœ—1πΎΒ±πœ‡+π‘‰π‘ŠΒ±πœ‡ξ€Έ,πΎξ…žΒ±πœ‡=1ξ”πœ—21+𝑉2ξ€·π‘‰πΎΒ±πœ‡+πœ—1π‘ŠΒ±πœ‡ξ€Έ.(3.22) The neutral sector in approximation (πœ—π‘–/𝑉)π‘›β‰ˆ0 for 𝑛>2 leads to the following masses for the neutral physical fields: 𝑀2photon=0,𝑀2𝐾0𝑅=12𝑔2𝑉2+πœ—21ξ€Έ,𝑀2π‘β‰ˆ12𝑔2πœ—22ξ‚΅3𝑔2+4𝑔2π‘₯3𝑔2+𝑔2π‘₯ξ‚Ά,𝑀2π‘ξ…žβ‰ˆ29𝑉2+πœ—21ξ€Έξ€·3𝑔2+𝑔2π‘₯ξ€Έ+πœ—22ξ€·3𝑔2+4𝑔2π‘₯ξ€Έ218ξ€·3𝑔2+𝑔2π‘₯ξ€Έ,𝑀2𝐾0𝐼=12𝑔2𝑉2+πœ—21ξ€Έ.(3.23) We can see from (3.21) and (3.23) that we have one nonmassive boson, which we associate with the photon, and four massive neutral fields, where the mass of one of them is proportional to πœ—2 while the other three have masses proportional to 𝑉 (new energy scale). Therefore we can associate the field 𝑍 with SM π‘πœ‡ and the fields 𝑍′, 𝐾0𝐼, and πΎξ…ž0𝑅 with three new neutral bosons. We note that (3.23) contains two same of the eigenvalues; thus, the 𝐾0𝐼 and πΎξ…ž0𝑅 components have the same mass, and this conclusion contradicts the previous analysis in [41], but this is in agreement with [43, 44]. We also have four massive charged fields, where two of them have masses proportional to πœ—2. Thus we can associate the fields π‘Šξ…žΒ±πœ‡ to the SM fields π‘ŠΒ±πœ‡, while the fields πΎξ…žΒ±πœ‡ are new bosons. The eigenstates π΅πœ‡,π‘Š3πœ‡,π‘Š8πœ‡, and πΎπ‘œπ‘…πœ‡ can be related to the physical eigenstates π΄πœ‡,πΎξ…ž0π‘…πœ‡,𝑍0πœ‡, and π‘ξ…ž0πœ‡ by βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽπ΅πœ‡π‘Š3πœ‡π‘Š8πœ‡πΎπ‘œπ‘…πœ‡βŽžβŽŸβŽŸβŽŸβŽŸβŽŸβŽŸβŽ =πŒβˆ’πŸβŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽπ΄πœ‡πΎξ…ž0π‘…πœ‡π‘0πœ‡π‘ξ…ž0πœ‡βŽžβŽŸβŽŸβŽŸβŽŸβŽŸβŽŸβŽŸβŽŸβŽ .(3.24) Assuming (πœ—π‘–/𝑉)π‘›βˆΌ0 for 𝑛>2, we obtain πŒβˆ’1=βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽβˆ’1π‘‘π‘†π‘Š01𝑑𝑇2π‘ŠπΆπ‘Š+𝛽1βˆ’1√3π‘‡π‘Š+𝛽2π‘†π‘Šβˆ’πœ—1π‘‰πΆπ‘Š+𝛽3𝛽41√3π‘†π‘Šβˆš3πœ—1π‘‰βˆ’1√3π‘‡π‘Šπ‘†π‘Š+𝛽5βˆ’1π‘‘π‘‡π‘Š+𝛽601βˆ’π›½7πœ—1π‘‰πΆβˆ’1π‘Šβˆš3πœ—1π‘‘π‘‰π‘‡π‘ŠβŽžβŽŸβŽŸβŽŸβŽŸβŽŸβŽŸβŽŸβŽŸβŽŸβŽ ,(3.25) where, again, 𝑑=𝑔π‘₯/𝑔 and π‘†π‘Š=√3𝑔π‘₯√3𝑔2+4𝑔2π‘₯,πΆπ‘Š=1βˆ’π‘†2π‘Š,π‘‡π‘Š=π‘†π‘ŠπΆπ‘Š,𝛽1=βˆ’πœ—224𝑑𝑉2𝑇2π‘ŠπΆβˆ’3π‘Š,𝛽2=βˆ’βˆš3πœ—224𝑑2𝑉2𝑇3π‘ŠπΆβˆ’2π‘Š,𝛽3=βˆ’πœ—212𝑉2πΆβˆ’1π‘Š,𝛽4=βˆ’βˆš3ξ€·2𝐢2π‘Šπœ—21+πœ—22ξ€Έ4𝑑𝑉2π‘‡π‘ŠπΆβˆ’2π‘Š,𝛽5=6𝐢4π‘Šπœ—21βˆ’ξ€·3βˆ’4𝑆2π‘Šξ€Έπœ—224√3𝑉2𝐢5π‘Š,𝛽6=ξ€·6𝐢4π‘Šπœ—21+𝑆2π‘Šπœ—22ξ€Έ4𝑑𝑉2𝐢4π‘Šπ‘‡π‘Š,𝛽7=βˆ’2πœ—22𝑉2.(3.26) We note that all 𝛽𝑖 are of order π’ͺ((πœ—π‘–/𝑉)2). So, assuming πœ—π‘–βˆΌπ’ͺ(10βˆ’1)TeV, for a new energy scale of order π‘‰βˆΌ10TeV, all the 𝛽𝑖’s are negligible.

3.3.2. Charged and Neutral Currents

The interaction between gauge bosons and fermions in flavor basis is given by the following Lagrangian density: ℒ𝑓=π‘…π‘–π›Ύπœ‡ξ€·πœ•πœ‡+𝑖𝑔π‘₯π΅πœ‡π‘‹π‘…ξ€Έπ‘…+πΏπ‘–π›Ύπœ‡ξ‚΅πœ•πœ‡+𝑖𝑔π‘₯π΅πœ‡π‘‹πΏ+𝑖𝑔2πœ†π‘Žπ‘Šπ‘Žπœ‡ξ‚ΆπΏ,(3.27) where 𝑅 represents any right-handed singlet and 𝐿 any left-handed triplet. We can write ℒ𝑓=β„’lep+ℒ𝑄1+β„’π‘„π‘Ž, and in lepton sector, we obtain β„’lep=β„’kinlep+β„’CClep+β„’NClep,(3.28) where β„’kinlep=π‘…π‘–π›Ύπœ‡πœ•πœ‡π‘…+πΏπ‘–π›Ύπœ‡πœ•πœ‡πΏ,(3.29)β„’CClep=βˆ’π‘”βˆš2β„“πΏπ›Ύπœ‡πœˆβ„“πΏπ‘Š+πœ‡βˆ’π‘”βˆš2β„“πΏπ›Ύπœ‡π‘0ℓ𝐿𝐾+πœ‡+h.c.,(3.30)β„’NClep=𝑔π‘₯3ξ‚ƒβ„“πΏπ›Ύπœ‡β„“+πœˆβ„“πΏπ›Ύπœ‡πœˆβ„“πΏ+𝑁0β„“πΏπ›Ύπœ‡π‘0β„“πΏξ‚„π΅πœ‡+𝑔π‘₯β„“π‘…π›Ύπœ‡β„“π‘…π΅πœ‡βˆ’π‘”2√3ξ‚ƒβ„“πΏπ›Ύπœ‡β„“πΏ+πœˆβ„“πΏπ›Ύπœ‡πœˆβ„“πΏβˆ’2𝑑𝑁0β„“πΏπ›Ύπœ‡π‘0β„“πΏξ‚„π‘Š8πœ‡βˆ’π‘”βˆš2πœˆβ„“πΏπ›Ύπœ‡π‘0ℓ𝐿𝐾0πœ‡βˆ’π‘”2ξ‚ƒβ„“πΏπ›Ύπœ‡β„“πΏβˆ’πœˆβ„“πΏπ›Ύπœ‡πœˆβ„“πΏξ‚„π‘Š3πœ‡βˆ’π‘”βˆš2𝑁0β„“πΏπ›Ύπœ‡πœˆβ„“πΏπΎ0πœ‡.(3.31) In quark sector we have that for the first family triplet 𝑋=1/3, and for the singlets 𝑑,𝑒, and π‘ˆ1, we have 𝑋=βˆ’1/3,2/3 and 2/3, respectively. Then we have β„’kin𝑄1=𝑄1π‘…π‘–π›Ύπœ‡πœ•πœ‡π‘„1𝑅+𝑄1πΏπ‘–π›Ύπœ‡πœ•πœ‡π‘„1𝐿,β„’CC𝑄1=βˆ’π‘”βˆš2π‘‘πΏπ›Ύπœ‡π‘’πΏπ‘Š+πœ‡βˆ’π‘”βˆš2π‘‘πΏπ›Ύπœ‡π‘ˆ1𝐿𝐾+πœ‡+h.c.,(3.32)β„’NC𝑄1=𝑔π‘₯3ξ‚€π‘‘π‘…π›Ύπœ‡π‘‘π‘…βˆ’2π‘’π‘…π›Ύπœ‡π‘’π‘…βˆ’2π‘ˆ1π‘…π›Ύπœ‡π‘ˆ1π‘…ξ‚π΅πœ‡+𝑔2π‘’πΏπ›Ύπœ‡π‘’πΏπ‘Š3πœ‡βˆ’π‘”π‘₯3ξ‚€π‘‘πΏπ›Ύπœ‡π‘‘πΏ+π‘’πΏπ›Ύπœ‡π‘’πΏ+π‘ˆ1πΏπ›Ύπœ‡π‘ˆ1πΏξ‚π΅πœ‡βˆ’π‘”2π‘‘πΏπ›Ύπœ‡π‘‘πΏπ‘Š3πœ‡βˆ’π‘”βˆš2π‘ˆ1πΏπ›Ύπœ‡π‘’πΏπΎ0πœ‡βˆ’π‘”2√3ξ‚€π‘‘πΏπ›Ύπœ‡π‘‘πΏ+π‘’πΏπ›Ύπœ‡π‘’πΏβˆ’2π‘ˆ1πΏπ›Ύπœ‡π‘ˆ1πΏξ‚π‘Š8πœ‡βˆ’π‘”βˆš2π‘’πΏπ›Ύπœ‡π‘ˆ1𝐿𝐾0πœ‡.(3.33)

For second and third families we know that 𝑋=0 for the triplets and 𝑋=2/3,βˆ’1/3 and βˆ’1/3, for the singlets 𝑒2,3,𝑑2,3,𝐷2,3, respectively, where 𝑒2=𝑐,𝑒3=𝑑,𝑑2=𝑠,𝑑3=𝑏. Then we obtain for π‘Ž=2,3β„’kinπ‘„π‘Ž=π‘„π‘Žπ‘…π‘–π›Ύπœ‡πœ•πœ‡π‘„π‘Žπ‘…+π‘„π‘ŽπΏπ‘–π›Ύπœ‡πœ•πœ‡π‘„π‘ŽπΏ,β„’CCπ‘„π‘Ž=βˆ’π‘”βˆš2π‘’π‘ŽπΏπ›Ύπœ‡π‘‘π‘ŽπΏπ‘Š+πœ‡βˆ’π‘”βˆš2π‘’π‘ŽπΏπ›Ύπœ‡π·π‘ŽπΏπΎ+πœ‡+h.c.,β„’NCπ‘„π‘Ž=𝑔π‘₯3ξ‚ƒβˆ’2π‘’π‘Žπ‘…π›Ύπœ‡π‘’π‘Žπ‘…+π‘‘π‘Žπ‘…π›Ύπœ‡π‘‘π‘Žπ‘…+π·π‘Žπ‘…π›Ύπœ‡π·π‘Žπ‘…ξ‚„π΅πœ‡βˆ’π‘”2√3ξ‚ƒπ‘’π‘ŽπΏπ›Ύπœ‡π‘’π‘ŽπΏ+π‘‘π‘ŽπΏπ›Ύπœ‡π‘‘π‘ŽπΏβˆ’4π·π‘ŽπΏπ›Ύπœ‡π·π‘ŽπΏξ‚„π‘Š8πœ‡βˆ’π‘”βˆš2π‘‘π‘ŽπΏπ›Ύπœ‡π·π‘ŽπΏπΎ0πœ‡βˆ’π‘”2ξ‚ƒπ‘’π‘ŽπΏπ›Ύπœ‡π‘’π‘ŽπΏβˆ’π‘‘π‘ŽπΏπ›Ύπœ‡π‘‘π‘ŽπΏξ‚„π‘Š3πœ‡βˆ’π‘”βˆš2π·π‘ŽπΏπ›Ύπœ‡π‘‘π‘ŽπΏπΎ0πœ‡.(3.34)

4. Neutrinos Interactions with Matter in 331 Model

It is well known that neutrino oscillation phenomenon in a material medium, as the sun, earth, or in a supernova, can be quite different from the oscillation that occurs in vacuum, since the interactions in the medium modify the dispersion relations of the particles traveling through it [60]. From the macroscopic point of view, the modifications of neutrino dispersion relations can be represented in terms of a refractive index or an effective potential. And according to [60, 61], the effective potential can be calculated from the amplitudes of coherent elastic scattering in relativistic limit.

In the present 331 model, the coherent scattering will be induced by neutral currents, NC, mediated by bosons π‘ξ…ž0πœ‡,𝑍0πœ‡, and πΎξ…ž0π‘…πœ‡ and by charged currents, CC, mediated by bosons π‘Šξ…žΒ±πœ‡ and πΎξ…žΒ±πœ‡. Following [61], we calculate in next sections the neutrino effective potentials in coherent scattering.

4.1. Charged Currents

The first term of (3.30) shows that the interaction of charged leptons with neutrinos occurs only through the gauge bosons π‘ŠΒ±πœ‡; then, by (3.22) we obtain that the interaction through charged bosons is given by βˆ’π‘”βˆš2β„“πΏπ›Ύπœ‡πœˆβ„“πΏπ‘Š+πœ‡=βˆ’π‘‰π‘”βˆš2ξ”πœ—21+𝑉2β„“πΏπ›Ύπœ‡πœˆβ„“πΏπ‘Šξ…žΒ±πœ‡βˆ’π‘”πœ—1√2ξ”πœ—21+𝑉2β„“πΏπ›Ύπœ‡πœˆβ„“πΏπΎξ…žΒ±πœ‡.(4.1) The amplitude for the neutrino elastic scattering with charged leptons in tree level through CC is given by (note from (4.1) that only left-handed leptons interact with neutrinos, as in SM) β„’ccint=βˆ’βŽ›βŽœβŽœβŽœβŽβˆ’π‘‰π‘”βˆš2ξ”πœ—21+𝑉2⎞⎟⎟⎟⎠2ℓ𝐿𝑝1ξ€Έπ›Ύπœ‡πœˆβ„“πΏξ€·π‘2ξ€Έβˆ’π‘–π‘”πœ‡πœ†ξ€·π‘2βˆ’π‘1ξ€Έ2βˆ’π‘€2π‘Šπœˆβ„“πΏξ€·π‘3ξ€Έπ›Ύπœ†β„“πΏξ€·π‘4ξ€Έβˆ’βŽ›βŽœβŽœβŽœβŽβˆ’π‘”πœ—1√2ξ”πœ—21+𝑉2⎞⎟⎟⎟⎠2ℓ𝐿𝑝1ξ€Έπ›Ύπœ‡πœˆβ„“πΏξ€·π‘2ξ€Έβˆ’π‘–π‘”πœ‡πœ†ξ€·π‘2βˆ’π‘1ξ€Έ2βˆ’π‘€2πΎπœˆβ„“πΏξ€·π‘3ξ€Έπ›Ύπœ†β„“πΏξ€·π‘4ξ€Έ.(4.2) For low energies 𝑀2π‘Šξ…ž,𝑀2πΎξ…žβ‰«(𝑝2βˆ’π‘1)2, the effective Lagrangian is given by β„’cceο¬€β‰ˆβˆ’π‘”22ξ€·πœ—21+𝑉2ξ€ΈβŽ›βŽœβŽπ‘‰2𝑀2π‘Šξ…ž+πœ—21𝑀2πΎξ…žβŽžβŽŸβŽ ξ‚ƒβ„“πΏξ€·π‘1ξ€Έπ›Ύπœ‡β„“πΏξ€·π‘4ξ€Έξ‚„ξ€Ίπœˆβ„“πΏξ€·π‘3ξ€Έπ›Ύπœ‡πœˆβ„“πΏξ€·π‘2ξ€Έξ€»,(4.3) where we used the Fierz transformation [62] to go from (4.2) to (4.3). Replacing (3.21) in (4.3), we obtain βˆ’β„’cceο¬€β‰ˆβŽ‘βŽ’βŽ£1πœ—22βˆ’πœ—21𝑉2πœ—22+βŽ›βŽœβŽπœ—21𝑉4βŽžβŽŸβŽ πΎξ…ž+π’ͺξ‚€1𝑉4ξ‚βŽ€βŽ₯βŽ¦ξ„”β„“π›Ύπœ‡ξ€·1βˆ’π›Ύ5ξ€Έ2β„“ξ„•ξ€½πœˆβ„“πΏ(𝑝)π›Ύπœ‡πœˆβ„“πΏ(𝑝)ξ€Ύ,(4.4) where we used ()πΎξ…ž to denote the term that appears from the new charged boson. We can see that for a new energy scale π‘‰β‰«πœ—1 the term that comes from the new boson does not contribute to the process, as expected, since the new charged boson πΎξ…žΒ±πœ‡ has a mass of the order of the new energy scale of the theory (see (3.21)).

Now, since usual matter has only leptons from first family, we will restrain our calculations to the neutrino interactions with first family standard model particles. The term ⟨⟩ in (4.4) can be calculated following [61], where we have the correspondence βŸ¨π‘’π›Ύπœ‡π›Ύ5π‘’βŸ©βˆΌ spin, βŸ¨π‘’π›Ύπ‘–π‘’βŸ©βˆΌ velocity, and βŸ¨π‘’π›Ύ0π‘’βŸ©βˆΌπ‘›π‘’, where 𝑛𝑒 is the electronic density. Assuming nonpolarized medium and vanishing average velocity, we obtain that (4.4) can be written as β„’cceο¬€β‰ˆβˆ’βŽ‘βŽ’βŽ£12πœ—22βˆ’πœ—212𝑉2πœ—22+βŽ›βŽœβŽπœ—212𝑉4βŽžβŽŸβŽ πΎξ…ž+π’ͺξ€·π‘‰βˆ’4ξ€ΈβŽ€βŽ₯βŽ¦π‘›π‘’πœˆπ‘’πΏπ›Ύ0πœˆπ‘’πΏ.(4.5) The modifications on electronic neutrino dispersion relations can be represented by the following effective potential: 𝑉𝑒CCβ‰ˆ12πœ—22π‘›π‘’βˆ’πœ—212𝑉2πœ—22𝑛𝑒+βŽ›βŽœβŽπœ—212𝑉4βŽžβŽŸβŽ πΎξ…žπ‘›π‘’+π’ͺξ€·π‘‰βˆ’4ξ€Έ.(4.6) Disregarding the term ()πΎξ…ž since we are assuming π‘‰β‰«πœ—π‘–, and remembering that in Section 3.3.1 we associated boson π‘Šβ€² with SM boson π‘Š, we can easily associate √2πΊπΉβ‰ˆ12πœ—22βˆ’πœ—212𝑉2πœ—22.(4.7) We note that (4.7) gives limits for the VEV of one of the Higgs triplets. Under assumption πœ—1,πœ—2β‰ͺ𝑉, we can write πΊπΉβ‰ˆ(1/2√2πœ—22)(1βˆ’πœ—21/𝑉2), from which we can see that the maximum value of πœ—22 is achieved when we consider (πœ—21/𝑉2)β†’0, in which replacing 𝐺𝐹=1.16637(1)Γ—10βˆ’5Gevβˆ’2 leads to πœ—2≲174.105GeV.(4.8)

4.2. Neutral Current

The Lagrangian for neutrino elastic scattering with fermions 𝑓=𝑒,𝑒,𝑑 through NC is given by βˆ’β„’NCint=𝑓𝑝1ξ€Έπ›Ύπœ‡ξ‚€π‘”π‘“π‘§ξ…žπΏ+π‘”π‘“π‘§ξ…žπ‘…ξ‚π‘“ξ€·π‘2ξ€Έβˆ’π‘–π‘”πœ‡πœ†ξ€·π‘2βˆ’π‘1ξ€Έ2βˆ’π‘€2π‘§ξ…žπœˆβ„“πΏξ€·π‘3ξ€Έπ›Ύπœ†π‘”πœˆπ‘§ξ…žπœˆβ„“πΏξ€·π‘4ξ€Έ+𝑓𝑝1ξ€Έπ›Ύπœ‡ξ‚€π‘”π‘“π‘§πΏ+𝑔𝑓𝑧𝑅𝑓𝑝2ξ€Έβˆ’π‘–π‘”πœ‡πœ†ξ€·π‘2βˆ’π‘1ξ€Έ2βˆ’π‘€2π‘§πœˆβ„“πΏξ€·π‘3ξ€Έπ›Ύπœ†π‘”πœˆπ‘§πœˆβ„“πΏξ€·π‘4ξ€Έ+𝑓𝑝1ξ€Έπ›Ύπœ‡ξ‚€π‘”π‘“π‘˜ξ…žπΏ+π‘”π‘“π‘˜ξ…žπ‘…ξ‚π‘“ξ€·π‘2ξ€Έβˆ’π‘–π‘”πœ‡πœ†ξ€·π‘2βˆ’π‘1ξ€Έ2βˆ’π‘€2π‘˜ξ…žπœˆβ„“πΏξ€·π‘3ξ€Έπ›Ύπœ†π‘”πœˆπ‘˜ξ…žπœˆβ„“πΏξ€·π‘2ξ€Έ.(4.9) For low energies, we have that 𝑀2π‘˜ξ…ž,𝑀2𝑧,𝑀2π‘§ξ…žβ‰«(𝑝2βˆ’π‘1)2 with 𝑝3=𝑝4=𝑝 and (4.9), and following the same procedure of Section 4.1, we obtain β„’NCeο¬€β‰ˆβˆ’ξ“π‘ƒ=𝐿,π‘…βŽ›βŽœβŽπ‘”π‘“π‘§ξ…žπ‘ƒπΊπœˆπ‘§ξ…žπ‘€2π‘§ξ…ž+π‘”π‘“π‘§π‘ƒπΊπœˆπ‘§π‘€2𝑧+π‘”π‘“π‘˜ξ…žπ‘ƒπΊπœˆπ‘˜ξ…žπ‘€2π‘˜ξ…žβŽžβŽŸβŽ 12π‘›π‘“πœˆβ„“πΏπ›Ύ0πœˆβ„“πΏ.(4.10)

4.2.1. Leptons Sector

From (3.31) and (3.24), we obtain that for the known neutral leptons 𝑔π‘₯3πœˆβ„“πΏπ›Ύπœ‡πœˆβ„“πΏπ΅πœ‡=πœˆβ„“πΏπ›Ύπœ‡πœˆβ„“πΏξ‚ƒβˆ’π‘”3π‘†π‘Šπ΄πœ‡+𝑔3𝑇2π‘ŠπΆπ‘Š+𝑔π‘₯3𝛽1𝑍0πœ‡βˆ’π‘”π‘₯3βŽ›βŽœβŽ1√3π‘‡π‘Šβˆ’π›½2βŽžβŽŸβŽ π‘ξ…ž0πœ‡βŽ€βŽ₯⎦,(4.11)𝑔2πœˆβ„“πΏπ›Ύπœ‡πœˆβ„“πΏπ‘Šπœ‡3=πœˆβ„“πΏπ›Ύπœ‡πœˆβ„“πΏβŽ‘βŽ’βŽ£π‘”2π‘†π‘Šπ΄πœ‡βˆ’π‘”πœ—12π‘‰πΎξ…ž0π‘…πœ‡+π‘”ξ€·πΆπ‘Š+𝛽3ξ€Έ2𝑍0πœ‡+𝑔𝛽42π‘ξ…ž0πœ‡βŽ€βŽ₯⎦,(4.12)βˆ’π‘”2√3πœˆβ„“πΏπ›Ύπœ‡πœˆβ„“πΏπ‘Šπœ‡8=πœˆβ„“πΏπ›Ύπœ‡πœˆβ„“πΏβŽ‘βŽ’βŽ£βˆ’π‘”6π‘†π‘Šπ΄πœ‡βˆ’π‘”πœ—12π‘‰πΎξ…ž0π‘…πœ‡+βŽ›βŽœβŽπ‘”6𝑆2π‘ŠπΆπ‘Šβˆ’π‘”π›½52√3βŽžβŽŸβŽ π‘0πœ‡+𝑔2√3ξ‚€1π‘‘π‘‡π‘Šβˆ’π›½6ξ‚π‘ξ…ž0πœ‡βŽ€βŽ₯⎦.(4.13) By (4.11), (4.12), and (4.13), we obtain that vertex interactions with neutrinos can be written as πœˆβ„“πΏπ›Ύπœ‡πœˆβ„“πΏπ΄πœ‡βˆ0,(4.14)πœˆβ„“πΏπ›Ύπœ‡πœˆβ„“πΏπΎξ…ž0π‘…πœ‡βˆβˆ’π‘”πœ—1π‘‰β‰‘πΊπœˆπΎξ…ž,(4.15)πœˆβ„“πΏπ›Ύπœ‡πœˆβ„“πΏπ‘0πœ‡βˆ12π‘”πΆβˆ’1π‘Š+πœ‚1β‰‘πΊπœˆπ‘,(4.16)πœˆβ„“πΏπ›Ύπœ‡πœˆβ„“πΏπ‘ξ…ž0πœ‡βˆβŽ›βŽœβŽ3π‘”βˆ’2𝑔π‘₯𝑑6√3π‘‘βŽžβŽŸβŽ π‘‡π‘Š+πœ‚2β‰‘πΊπœˆπ‘ξ…ž,(4.17) where πœ‚1=βˆ’4𝑔𝑑𝐢2π‘Šπœ—21+𝑔π‘₯ξ€·1βˆ’2𝑆2π‘Šξ€Έπœ—228𝑑𝑉2𝐢5π‘Š,πœ‚2=𝑔𝑑1βˆ’4𝐢2π‘Šξ€Έπœ—212√3𝑉2πΆπ‘Šπ‘†π‘Šβˆ’ξ€·βˆ’π‘”π‘‘3+2𝑔𝑑3𝐢2π‘Š+8𝑔𝑑3𝐢4π‘Š+6𝑔π‘₯𝑆4π‘Šξ€Έπœ—2224√3𝑑2𝑉2𝐢5π‘Šπ‘†π‘Š.(4.18) We note from (4.14) that neutrinos do not interact electrically, as expected. For charged leptons, from (3.31) and (3.24), we obtain 𝑔π‘₯3β„“πΏπ›Ύπœ‡β„“πΏπ΅πœ‡=β„“πΏπ›Ύπœ‡β„“πΏβŽ‘βŽ’βŽ£βˆ’π‘”3π‘†π‘Šπ΄πœ‡+𝑔3𝑇2π‘ŠπΆπ‘Š+𝑔π‘₯3𝛽1𝑍0πœ‡βˆ’π‘”π‘₯3βŽ›βŽœβŽ1√3π‘‡π‘Šβˆ’π›½2βŽžβŽŸβŽ π‘ξ…ž0πœ‡βŽ€βŽ₯⎦,βˆ’π‘”2β„“πΏπ›Ύπœ‡β„“πΏπ‘Šπœ‡3=β„“πΏπ›Ύπœ‡β„“πΏβŽ‘βŽ’βŽ£βˆ’π‘”2π‘†π‘Šπ΄πœ‡+π‘”πœ—12π‘‰πΎξ…ž0π‘…πœ‡βˆ’π‘”ξ€·πΆπ‘Š+𝛽3ξ€Έ2𝑍0πœ‡βˆ’π‘”π›½42π‘ξ…ž0πœ‡βŽ€βŽ₯⎦,βˆ’π‘”2√3β„“πΏπ›Ύπœ‡β„“πΏπ‘Šπœ‡8=β„“πΏπ›Ύπœ‡β„“πΏβŽ‘βŽ’βŽ£βˆ’π‘”6π‘†π‘Šπ΄πœ‡βˆ’π‘”πœ—12π‘‰πΎξ…ž0π‘…πœ‡+βŽ›βŽœβŽπ‘”6𝑆2π‘ŠπΆπ‘Šβˆ’π‘”π›½52√3βŽžβŽŸβŽ π‘0πœ‡+𝑔2√3ξ‚€1π‘‘π‘‡π‘Šβˆ’π›½6ξ‚π‘ξ…ž0πœ‡βŽ€βŽ₯⎦,𝑔π‘₯β„“π‘…π›Ύπœ‡β„“π‘…π΅πœ‡=β„“π‘…π›Ύπœ‡β„“π‘…βŽ‘βŽ’βŽ£βˆ’π‘”π‘†π‘Šπ΄πœ‡+𝑔𝑇2π‘ŠπΆπ‘Š+𝑔π‘₯𝛽1𝑍0πœ‡βˆ’π‘”π‘₯βŽ›βŽœβŽ1√3π‘‡π‘Šβˆ’π›½2βŽžβŽŸβŽ π‘ξ…ž0πœ‡βŽ€βŽ₯⎦,(4.19) and therefore β„“π›Ύπœ‡β„“π΄πœ‡βˆβˆ’π‘”π‘†π‘Š,(4.20)β„“πΏπ›Ύπœ‡β„“πΏπΎξ…ž0π‘…πœ‡βˆ0β‰‘π‘”β„“π‘˜ξ…žπΏ=π‘”β„“π‘˜ξ…žπ‘…,(4.21)β„“πΏπ›Ύπœ‡β„“πΏπ‘0πœ‡βˆ12π‘”ξ€·βˆ’1+𝑇2π‘Šξ€ΈπΆπ‘Š+πœ‚3≑𝑔ℓ𝑧𝐿,β„“π‘…π›Ύπœ‡β„“π‘…π‘0πœ‡βˆπ‘”π‘‡2π‘ŠπΆπ‘Š+πœ‚5≑𝑔ℓ𝑧𝑅,β„“πΏπ›Ύπœ‡β„“πΏπ‘ξ…ž0πœ‡βˆ16√3𝑑3π‘”βˆ’2𝑑𝑔π‘₯ξ€Έπ‘‡π‘Š+πœ‚4β‰‘π‘”β„“π‘§ξ…žπΏ,(4.22)β„“π‘…π›Ύπœ‡β„“π‘…π‘ξ…ž0πœ‡βˆβˆ’π‘”π‘₯√3π‘‡π‘Š+πœ‚6β‰‘π‘”β„“π‘§ξ…žπ‘…,(4.23) where πœ‚3=ξ€·βˆ’1+2𝐢2π‘Šξ€Έπ‘”π‘₯πœ—228𝑑𝑉2𝐢5π‘Š,πœ‚4=𝑔𝑑3ξ€·1+2𝐢2π‘Šξ€Έ2βˆ’12𝑔𝑑3𝑆2π‘ŠπΆ2π‘Šβˆ’6𝑔π‘₯𝑆4π‘Šξ‚24√3𝑑2𝑉2𝐢5π‘Šπ‘†π‘Š,πœ‚5=βˆ’π‘”π‘₯πœ—224𝑑𝑉2𝐢3π‘Šπ‘‡2π‘Š,πœ‚6=βˆ’βˆš3𝑔π‘₯πœ—224𝑑2𝑉2𝐢2π‘Šπ‘‡3π‘Š,(4.24) and, again, 𝑑=𝑔π‘₯/𝑔. We note that by (4.20) we can make the association π‘”π‘†π‘Š=|𝑒|. Then for 𝑓=𝑒, (4.15)–(4.17) and (4.21)–(4.23) lead to β„’NCeο¬€βˆ’π‘’β‰ˆβˆ’ξ“π‘ƒ=𝐿,𝑅12βŽ›βŽœβŽπ‘”π‘’π‘§ξ…žπ‘ƒπΊπœˆπ‘§ξ…žπ‘€2π‘§ξ…ž+π‘”π‘’π‘§π‘ƒπΊπœˆπ‘§π‘€2𝑧+π‘”π‘’π‘˜ξ…žπ‘ƒπΊπœˆπ‘˜ξ…žπ‘€2π‘˜ξ…žβŽžβŽŸβŽ π‘›π‘’πœˆβ„“πΏπ›Ύ0πœˆβ„“πΏβ‰ˆβˆ’βŽ§βŽ¨βŽ©βŽ‘βŽ’βŽ£π‘‡4π‘Š144𝑑2𝑔2π‘₯𝑉2ξ€·3π‘”βˆ’2𝑑𝑔π‘₯ξ€Έ2+𝑇2π‘Š8𝑉2ξ€·1βˆ’π‘‡2π‘Šξ€Έ+12βŽ›βŽœβŽ12πœ—22βˆ’πœ—212V2πœ—22βŽžβŽŸβŽ ξ€·1βˆ’2𝐢2π‘Šξ€ΈβŽ€βŽ₯⎦𝐿+βŽ‘βŽ’βŽ£π‘‡4π‘Šξ€·2𝑑𝑔π‘₯βˆ’3𝑔24𝑑𝑔π‘₯𝑉2βˆ’π‘‡4π‘Š4𝑉2+βŽ›βŽœβŽ12πœ—22βˆ’πœ—212𝑉2πœ—22βŽžβŽŸβŽ π‘†2π‘ŠβŽ€βŽ₯βŽ¦π‘…βŽ«βŽ¬βŽ­π‘›π‘’πœˆβ„“πΏπ›Ύ0πœˆβ„“πΏ.(4.25) Since intermediate neutral bosons in (4.9) do not distinguish between different lepton flavors, the interaction through NC with electron is described by the following effective potential: 𝑉𝑒NC=π‘‰πœ‡NC=π‘‰πœNC=𝑉ℓNC,=𝑉ℓ𝐿NC+𝑉ℓ𝑅NC,(4.26) where 𝑉ℓ𝐿NC=βŽ‘βŽ’βŽ£π‘‡4π‘Š144𝑑2𝑔2π‘₯𝑉2ξ€·3π‘”βˆ’2𝑑𝑔π‘₯ξ€Έ2+𝑇2π‘Š8𝑉2ξ€·1βˆ’π‘‡2π‘Šξ€Έ+12βŽ›βŽœβŽ12πœ—22βˆ’πœ—21𝑉2πœ—22βŽžβŽŸβŽ ξ€·1βˆ’2𝐢2π‘Šξ€ΈβŽ€βŽ₯βŽ¦π‘›π‘’,Vℓ𝑅NC=βŽ‘βŽ’βŽ£π‘‡4π‘Šξ€·2𝑑𝑔π‘₯βˆ’3𝑔24𝑑𝑔π‘₯𝑉2βˆ’π‘‡4π‘Š4𝑉2+βŽ›βŽœβŽ12πœ—22βˆ’πœ—212𝑉2πœ—22βŽžβŽŸβŽ π‘†2π‘ŠβŽ€βŽ₯βŽ¦π‘›π‘’,(4.27) and index β„“ refers to neutrino flavor. We note that the potential through CC comes from interactions of electron neutrinos with left-handed electrons, while the effective potential through NC comes from left- and right-handed electrons.

Considering both NC and CC, we can write the effective potential felt by neutrinos as 𝑉ℓ=𝑉ℓ𝐿+𝑉ℓ𝑅, where 𝑉ℓ𝐿=βŽ›βŽœβŽ12πœ—22βˆ’πœ—212𝑉2πœ—22βŽžβŽŸβŽ π›Ώπ‘’β„“π‘›π‘’+𝑉ℓ𝐿NC,𝑉ℓ𝑅=𝑉ℓ𝑅NC.(4.28) Comparing with SM expression for such potential: Vβ„“NC=βˆ’βˆš2𝐺𝐹12βˆ’2𝑆2π‘Šξ‚π‘›π‘’,V𝑒CC=√2𝐺𝐹𝑛𝑒,(4.29) we can find that 𝑉ℓ𝐿=𝑉ℓ𝐿+βŽ‘βŽ’βŽ£π‘‡4π‘Š144𝑑2𝑔2π‘₯𝑉2ξ€·3π‘”βˆ’2𝑑𝑔π‘₯ξ€Έ2+𝑇2π‘Š8𝑉2ξ€·1βˆ’π‘‡2π‘Šξ€ΈβŽ€βŽ₯βŽ¦π‘›π‘’,𝑉ℓ𝑅=𝑉ℓ𝑅NC+βŽ‘βŽ’βŽ£π‘‡4π‘Šξ€·2𝑑𝑔π‘₯βˆ’3𝑔24𝑑𝑔π‘₯𝑉2βˆ’π‘‡4π‘Š4𝑉2⎀βŽ₯βŽ¦π‘›π‘’,(4.30) where we adopt in what follow, the convention that 𝑉 denotes SM-like part of the model; thus, the new terms beyond SM [] can be associated with the parameters πœ€ξ…žs in NSI [63]. So, in the approximation (πœ—π‘–/𝑉)π‘›β‰ˆ0, for 𝑛>2, we obtain πœ€π‘’πΏβ„“β„“β‰ˆξ€·1βˆ’2𝑆2π‘Šξ€Έπœ—228𝑉2𝐢4π‘Š,(4.31)πœ€π‘’π‘…β„“β„“β‰ˆβˆ’π‘†2π‘Šξ€·1+2𝑆2π‘Šξ€Έπœ—224𝑉2𝐢4π‘Š.(4.32) We note that on limit π‘‰β†’βˆž, we recover SM. The NSIs are a subleading interaction, as expected. By (4.31) and (4.32), we obtain πœ€π‘’π‘…β„“β„“β‰ˆβˆ’2𝑆2π‘Šπœ€π‘’πΏβ„“β„“βˆ’(πœ—22/𝑉2)𝑇4π‘Š.

4.2.2. Quarks Sector

For the quarks of the first family, the Lagrangian density in (3.33) describes the interactions with gauge bosons π‘Š3πœ‡,π‘Š8πœ‡, and π΅πœ‡; then, by (3.24) and (3.25) we obtain the following interactions for up quarks: βˆ’π‘”π‘₯3π‘’πΏπ›Ύπœ‡π‘’πΏπ΅πœ‡=π‘’πΏπ›Ύπœ‡π‘’πΏβŽ‘βŽ’βŽ£π‘”3π‘†π‘Šπ΄πœ‡βˆ’π‘”π‘₯3ξ‚€1𝑑𝑇2π‘ŠπΆπ‘Š+𝛽1𝑍0πœ‡+𝑔π‘₯3βŽ›βŽœβŽ1√3π‘‡π‘Šβˆ’π›½2βŽžβŽŸβŽ π‘ξ…ž0πœ‡βŽ€βŽ₯⎦,𝑔2π‘’πΏπ›Ύπœ‡π‘’πΏπ‘Šπœ‡3=π‘’πΏπ›Ύπœ‡π‘’πΏβŽ‘βŽ’βŽ£π‘”2π‘†π‘Šπ΄πœ‡βˆ’π‘”πœ—12π‘‰πΎξ…ž0π‘…πœ‡+π‘”ξ€·πΆπ‘Š+𝛽3ξ€Έ2𝑍0πœ‡+𝑔𝛽42π‘ξ…ž0πœ‡βŽ€βŽ₯⎦,βˆ’π‘”2√3π‘’πΏπ›Ύπœ‡π‘’πΏπ‘Šπœ‡8=π‘’πΏπ›Ύπœ‡π‘’πΏξ‚Έβˆ’π‘”6π‘†π‘Šπ΄πœ‡βˆ’π‘”πœ—12π‘‰πΎξ…ž0π‘…πœ‡+𝑔2√3βŽ›βŽœβŽ1√3π‘‡π‘Šπ‘†π‘Šβˆ’π›½5βŽžβŽŸβŽ π‘0πœ‡+𝑔2√3ξ‚€1π‘‘π‘‡π‘Šβˆ’π›½6ξ‚π‘ξ…ž0πœ‡βŽ€βŽ₯⎦,βˆ’2𝑔π‘₯3π‘’π‘…π›Ύπœ‡π‘’π‘…π΅πœ‡=π‘’π‘…π›Ύπœ‡π‘’π‘…ξ‚Έ2𝑔3π‘†π‘Šπ΄πœ‡βˆ’2𝑔π‘₯3ξ‚€1𝑑𝑇2π‘ŠπΆπ‘Š+𝛽1𝑍0πœ‡+2𝑔π‘₯3ξ‚€1π‘‘π‘‡π‘Šβˆ’π›½6ξ‚π‘ξ…ž0πœ‡ξ‚Ή.(4.33) The couplings quark-quark-boson for the first family are given by π‘’πΏπ›Ύπœ‡π‘’πΏπ΄πœ‡βˆ23π‘”π‘†π‘Š,(4.34)π‘’π‘…π›Ύπœ‡π‘’π‘…π΄πœ‡βˆ23π‘”π‘†π‘Š,(4.35)π‘’πΏπ›Ύπœ‡π‘’πΏπΎξ…ž0π‘…πœ‡βˆβˆ’π‘”πœ—1π‘‰β‰‘π‘”π‘’π‘˜ξ…žπΏ,π‘’π‘…π›Ύπœ‡π‘’π‘…πΎξ…ž0π‘…πœ‡βˆ0β‰‘π‘”π‘’π‘˜ξ…žπ‘…,π‘’πΏπ›Ύπœ‡π‘’πΏπ‘0πœ‡βˆ16𝑔3βˆ’π‘‡2π‘Šξ€ΈπΆπ‘Š+𝜁1≑𝑔𝑒𝑧𝐿,π‘’π‘…π›Ύπœ‡π‘’π‘…π‘0πœ‡βˆβˆ’23𝑔𝑇2π‘ŠπΆπ‘Š+𝜁3≑𝑔𝑒𝑧𝑅,π‘’πΏπ›Ύπœ‡π‘’πΏπ‘ξ…ž0πœ‡βˆ16√3𝑑3𝑔+2𝑑𝑔π‘₯ξ€Έπ‘‡π‘Šβ‰‘π‘”π‘’π‘§ξ…žπΏ,π‘’π‘…π›Ύπœ‡π‘’π‘…π‘ξ…ž0πœ‡βˆ23√3𝑔π‘₯π‘‡π‘Š+𝜁4β‰‘π‘”π‘’π‘§ξ…žπ‘…,(4.36) where 𝜁1=𝑔π‘₯ξ€·βˆ’12𝐢4π‘Šπœ—21+ξ€·1+2𝐢2π‘Šξ€Έπœ—22ξ€Έ24𝑑𝑉2𝐢5π‘Š,𝜁2=12𝑔𝑑3𝐢4π‘Šξ€·1βˆ’4𝐢2π‘Šξ€Έπœ—21+𝑔𝑑3ξ€·1βˆ’2𝐢2π‘Šβˆ’8𝐢4π‘Šξ€Έ+6𝑔π‘₯𝑆4π‘Šξ€Έπœ—2224√3𝑑2𝑉2𝐢5π‘Šπ‘†π‘Š,𝜁3=𝑔6𝑆2π‘Šπœ—22𝐢5π‘Šπ‘‰2,𝜁4=𝑔π‘₯𝑆3π‘Šπœ—222√3𝑑2𝑉2𝐢5π‘Š.(4.37) We note that (4.34) and (4.35) reflect the fact that quarks interact electrically through photons with coupling constant 𝑄𝑓sinπœƒπ‘Š, as in SM. The effective Lagrangian at low energies for neutrino interaction with quarks up through neutral currents are given by (4.10) with 𝑓=𝑒: β„’NCquark,π‘’β‰ˆβˆ’12𝑃=𝐿,π‘…βŽ›βŽœβŽπ‘”π‘’π‘§ξ…žπ‘ƒπΊπœˆπ‘§ξ…žπ‘€2π‘§ξ…ž+π‘”π‘’π‘§π‘ƒπΊπœˆπ‘§π‘€2𝑧+π‘”π‘’π‘˜ξ…žπ‘ƒπΊπœˆπ‘˜ξ…žπ‘€2π‘˜ξ…žβŽžβŽŸβŽ π‘›π‘’πœˆβ„“πΏπ›Ύ0πœˆβ„“πΏβ‰ˆβˆ’βŽ§βŽ¨βŽ©βŽ‘βŽ’βŽ£124𝑉2ξ€·3+𝑇4π‘Šξ€Έ+𝑇4π‘Š144𝑑4𝑉2ξ€·9βˆ’4𝑑4ξ€Έ+βŽ›βŽœβŽ12πœ—22βˆ’πœ—212𝑉2πœ—22βŽžβŽŸβŽ ξ‚€12βˆ’23𝑆2π‘Šξ‚βˆ’πœ—214𝑉2πœ—22⎀βŽ₯⎦𝐿+βŽ‘βŽ’βŽ£π‘‡4π‘Š6𝑉2+𝑇4π‘Šξ€·3π‘”βˆ’2𝑑𝑔π‘₯ξ€Έ36𝑑𝑔π‘₯𝑉2βˆ’23βŽ›βŽœβŽ12πœ—22βˆ’πœ—212𝑉2πœ—22βŽžβŽŸβŽ π‘†2π‘ŠβŽ€βŽ₯βŽ¦π‘…βŽ«βŽ¬βŽ­π‘›π‘’πœˆβ„“πΏπ›Ύ0πœˆβ„“πΏ,(4.38) where 𝑛𝑒 is the up quarks average density.

SM predictions, using result of (4.7), can be written as V𝑒NC=V𝑒𝐿NC+V𝑒𝑅NC=βŽ›βŽœβŽ12πœ—22βˆ’πœ—212𝑉2πœ—22βŽžβŽŸβŽ ξ‚€12βˆ’43𝑆2π‘Šξ‚π‘›π‘’,(4.39) where V𝑒𝐿NC=βŽ›βŽœβŽ12πœ—22βˆ’πœ—212𝑉2πœ—22βŽžβŽŸβŽ ξ‚€12βˆ’23𝑆2π‘Šξ‚π‘›π‘’,V𝑒𝑅NC=βˆ’23βŽ›βŽœβŽ12πœ—22βˆ’πœ—212𝑉2πœ—22βŽžβŽŸβŽ π‘†2π‘Šπ‘›π‘’.(4.40) By comparison, we obtain 𝑉𝑒𝐿NCβ‰ˆπ‘‰π‘’πΏNC+⎑⎒⎣124𝑉2ξ€·3+𝑇4π‘Šξ€Έ+𝑇4π‘Š144𝑑4𝑉2ξ€·9βˆ’4𝑑4ξ€Έβˆ’πœ—214𝑉2πœ—22⎀βŽ₯βŽ¦π‘›π‘’,𝑉𝑒𝑅NCβ‰ˆπ‘‰π‘’π‘…NC+βŽ‘βŽ’βŽ£π‘‡4π‘Š6𝑉2+𝑇4π‘Šξ€·3π‘”βˆ’2𝑑𝑔π‘₯ξ€Έ36𝑑𝑔π‘₯𝑉2⎀βŽ₯βŽ¦π‘›π‘’.(4.41) Then we can say that πœ€π‘’β„“β„“=πœ€π‘’πΏβ„“β„“+πœ€π‘’π‘…β„“β„“, where πœ€π‘’πΏβ„“β„“β‰ˆβˆ’πœ—212𝑉2+πœ—2224𝑉2𝐢4π‘Šξ€·9βˆ’8𝑆2π‘Šξ€Έ,πœ€π‘’π‘…β„“β„“β‰ˆπœ—226𝑉2𝑆2π‘ŠπΆ4π‘Š.(4.42) Again, we obtain universal NSI, as for the electrons. We note that πœ€π‘’πΏβ„“β„“=βˆ’(πœ—21/2𝑉2)+(3πœ—22/8𝑉2𝐢4π‘Š)βˆ’2πœ€π‘’π‘…β„“β„“ and in the limit π‘‰β†’βˆž we recover SM.

For down quarks by (3.33) and (3.24), we obtain that βˆ’π‘”π‘₯3π‘‘πΏπ›Ύπœ‡π‘‘πΏπ΅πœ‡=π‘‘πΏπ›Ύπœ‡π‘‘πΏβŽ‘βŽ’βŽ£π‘”3π‘†π‘Šπ΄πœ‡βˆ’π‘”π‘₯3ξ‚€1𝑑𝑇2π‘ŠπΆπ‘Š+𝛽1𝑍0πœ‡+𝑔π‘₯3βŽ›βŽœβŽ1√3π‘‡π‘Šβˆ’π›½2βŽžβŽŸβŽ π‘ξ…ž0πœ‡βŽ€βŽ₯⎦,βˆ’π‘”2π‘‘πΏπ›Ύπœ‡π‘‘πΏπ‘Šπœ‡3=π‘‘πΏπ›Ύπœ‡π‘‘πΏβŽ‘βŽ’βŽ£βˆ’π‘”π‘†π‘Š2π΄πœ‡+π‘”πœ—12π‘‰πΎξ…ž0π‘…πœ‡βˆ’π‘”ξ€·πΆπ‘Š+𝛽3ξ€Έ2𝑍0πœ‡βˆ’π‘”π›½42π‘ξ…ž0πœ‡βŽ€βŽ₯⎦,βˆ’π‘”2√3π‘‘πΏπ›Ύπœ‡π‘‘πΏπ‘Šπœ‡8=π‘‘πΏπ›Ύπœ‡π‘‘πΏβŽ‘βŽ’βŽ£βˆ’π‘”π‘†π‘Š6π΄πœ‡+𝑔2√3βŽ›βŽœβŽ1√3π‘‡π‘Šπ‘†π‘Šβˆ’π›½5βŽžβŽŸβŽ π‘0πœ‡+βˆ’π‘”πœ—12π‘‰πΎξ…ž0π‘…πœ‡+𝑔2√3ξ‚€1π‘‘π‘‡π‘Šβˆ’π›½6ξ‚π‘ξ…ž0πœ‡βŽ€βŽ₯⎦,𝑔π‘₯3π‘‘π‘…π›Ύπœ‡π‘‘π‘…π΅πœ‡=π‘‘πΏπ›Ύπœ‡π‘‘πΏβŽ‘βŽ’βŽ£βˆ’π‘”π‘†π‘Š3π΄πœ‡+𝑔π‘₯3ξ‚€1𝑑𝑇2π‘ŠπΆπ‘Š+𝛽1𝑍0πœ‡+𝑔π‘₯3βŽ›βŽœβŽβˆ’1√3π‘‡π‘Š+𝛽2βŽžβŽŸβŽ π‘ξ…ž0πœ‡βŽ€βŽ₯⎦.(4.43)π‘‘πΏπ›Ύπœ‡π‘‘πΏπ΄πœ‡βˆβˆ’13π‘”π‘†π‘Š,π‘‘π‘…π›Ύπœ‡π‘‘π‘…π΄πœ‡βˆβˆ’13π‘”π‘†π‘Š,π‘‘πΏπ›Ύπœ‡π‘‘πΏπΎξ…ž0π‘…πœ‡βˆ0β‰‘π‘”π‘‘π‘˜ξ…žπΏ,π‘‘π‘…π›Ύπœ‡π‘‘π‘…πΎξ…ž0π‘…πœ‡βˆ0β‰‘π‘”π‘‘π‘˜ξ…žπ‘…,π‘‘πΏπ›Ύπœ‡π‘‘πΏπ‘0πœ‡βˆβˆ’16𝑔3+𝑇2π‘Šξ€ΈπΆπ‘Š+𝜁5≑𝑔𝑑𝑧𝐿,π‘‘π‘…π›Ύπœ‡π‘‘π‘…π‘0πœ‡βˆπ‘”3𝑇2π‘ŠπΆπ‘Š+𝜁7≑𝑔𝑑𝑧𝑅,π‘‘πΏπ›Ύπœ‡π‘‘πΏπ‘ξ…ž0πœ‡βˆ16√3𝑑3𝑔+2𝑑𝑔π‘₯ξ€Έπ‘‡π‘Š+𝜁6β‰‘π‘”π‘‘π‘§ξ…žπΏ,π‘’π‘…π›Ύπœ‡π‘’π‘…π‘ξ…ž0πœ‡βˆβˆ’13√3𝑔π‘₯π‘‡π‘Š+𝜁8β‰‘π‘”π‘‘π‘§ξ…žπ‘…,(4.44) where 𝜁5=π‘”πœ—2224𝑉2𝐢5π‘Šξ€·3βˆ’2𝑆2π‘Šξ€Έ,𝜁6=ξ€·βˆ’1+3𝐢2π‘Š+6𝐢4π‘Šβˆ’8𝐢6π‘Šξ€Έ24√3𝑉2𝐢5π‘Šπ‘†3π‘Š,𝜁7=βˆ’π‘”π‘†2π‘Šπœ—2212𝑉2𝐢5π‘Š,𝜁8=βˆ’π‘”π‘₯𝑆3π‘Šπœ—224√3𝑑2𝑉2𝐢5π‘Š.(4.45) Then by (4.10) for 𝑓=𝑑, we obtain the following effective Lagrangian for NC: β„’NCquark,π‘‘β‰ˆβˆ’βŽ›βŽœβŽπ‘”π‘‘π‘§ξ…žπ‘‰πΊπœˆπ‘§ξ…žπ‘€2π‘§ξ…ž+π‘”π‘‘π‘§π‘‰πΊπœˆπ‘§π‘€2𝑧+π‘”π‘‘π‘˜ξ…žπ‘‰πΊπœˆπ‘˜ξ…žπ‘€2π‘˜ξ…žβŽžβŽŸβŽ π‘›π‘‘πœˆβ„“πΏπ›Ύ0πœˆβ„“πΏβ‰ˆβˆ’βŽ§βŽ¨βŽ©βŽ‘βŽ’βŽ£ξ€·3𝑆2π‘Šβˆ’2𝑆4π‘Šξ€Έ24𝑉2𝐢4π‘Š+ξ€·9βˆ’4𝑑4ξ€Έ144𝑑4𝑉2𝑇4π‘Š+βŽ›βŽœβŽ12πœ—22βˆ’πœ—212𝑉2πœ—22βŽžβŽŸβŽ ξ‚€βˆ’12+13𝑆2π‘Šξ‚βŽ€βŽ₯⎦𝐿+βŽ‘βŽ’βŽ£βˆ’π‘†2π‘Š24𝑉2𝐢4π‘Š+13βŽ›βŽœβŽ12πœ—22βˆ’πœ—212𝑉2πœ—22βŽžβŽŸβŽ π‘†2π‘ŠβŽ€βŽ₯βŽ¦π‘…βŽ«βŽ¬βŽ­π‘›π‘‘πœˆβ„“πΏπ›Ύ0πœˆβ„“πΏ,(4.46) and the effective potential felt by neutrinos when crossing a medium composed by a density 𝑛𝑑 of π‘‘π‘œπ‘€π‘› quarks is 𝑉𝑑NC=𝑉𝑑𝐿NC+𝑉𝑑𝑅NC, where 𝑉𝑑𝐿NCβ‰ˆβŽ‘βŽ’βŽ£ξ€·3𝑆2π‘Šβˆ’2𝑆4π‘Šξ€Έ24𝑉2𝐢4π‘Š+ξ€·9βˆ’4𝑑4ξ€Έ144𝑑4𝑉2𝑇4π‘Š+βŽ›βŽœβŽ12πœ—22βˆ’πœ—212𝑉2πœ—22βŽžβŽŸβŽ ξ‚€βˆ’12+13𝑆2π‘Šξ‚βŽ€βŽ₯βŽ¦π‘›π‘‘,(4.47)𝑉𝑑𝑅NCβ‰ˆβŽ‘βŽ’βŽ£βˆ’π‘†2π‘Š24𝑉2𝐢4π‘Š+13βŽ›βŽœβŽ12πœ—22βˆ’πœ—212𝑉2πœ—22βŽžβŽŸβŽ π‘†2π‘ŠβŽ€βŽ₯βŽ¦π‘›π‘‘.(4.48) Then we can easily see that in SM the NC effective potential for neutrinos in a 𝑑-quark medium, using result of (4.7), will be given by 𝑉𝑑NC=𝑉𝑑𝐿NC+𝑉𝑑𝑅NCβ‰ˆβˆ’βŽ›βŽœβŽ12πœ—22βˆ’πœ—212𝑉2πœ—22βŽžβŽŸβŽ ξ‚€12βˆ’23𝑆2π‘Šξ‚π‘›π‘‘,𝑉𝑑𝐿NC=βŽ›βŽœβŽ12πœ—22βˆ’πœ—212𝑉2πœ—22βŽžβŽŸβŽ ξ‚€βˆ’12+13𝑆2π‘Šξ‚π‘›π‘‘,(4.49)𝑉𝑑𝑅NC=13βŽ›βŽœβŽ12πœ—22βˆ’πœ—212𝑉2πœ—22βŽžβŽŸβŽ π‘†2π‘Šπ‘›π‘‘.(4.50) Then from (4.47)–(4.50), we obtain 𝑉𝑑𝐿NCβ‰ˆπ‘‰π‘‘πΏNC+βŽ‘βŽ’βŽ£ξ€·3𝑆2π‘Šβˆ’2𝑆4π‘Šξ€Έ24𝑉2𝐢4π‘Š+ξ€·9βˆ’4𝑑4ξ€Έ144𝑑4𝑉2𝑇4π‘ŠβŽ€βŽ₯βŽ¦π‘›π‘‘,𝑉𝑑𝑅NCβ‰ˆπ‘‰π‘‘π‘…NCβˆ’π‘†2π‘Š24𝑉2𝐢4π‘Šπ‘›π‘‘,(4.51) and neglecting terms of order (πœ—π‘–/𝑉)𝑛, for 𝑛>2, we obtain that πœ€π‘‘β„“β„“=πœ€π‘‘πΏβ„“β„“+πœ€π‘‘π‘…β„“β„“, where πœ€π‘‘πΏβ„“β„“β‰ˆπœ—2224𝑉2𝐢4π‘Šξ€·3βˆ’2𝑆2π‘Šξ€Έ,(4.52)πœ€π‘‘π‘…β„“β„“β‰ˆβˆ’π‘†2π‘Šπœ—2212𝑉2𝐢4π‘Š.(4.53) Then we obtain πœ€π‘‘πΏβ„“β„“β‰ˆ(πœ—22/8𝑉2𝐢4π‘Š)+πœ€π‘‘π‘…β„“β„“. Note that again in limit π‘‰β†’βˆž we recover the SM.

5. Results

In last sections we saw that in 331 model we chose, all NSI parameters are universal and diagonal and will not affect oscillation experiments. However, measurements of cross-section will be sensitive to such parameters, through modifications on 𝑔𝛼𝑖 [51]. We will now compare our results with those obtained in cross-section measurements. We will assume sin2πœƒπ‘Š=0.23149(13).

In Table 1 we can see that constrains in πœ€π‘’π‘ƒβ„“β„“ lead to 𝑉2>4.7πœ—22., while the constrains in πœ€π‘’π‘…β„“β„“ lead to 𝑉2>21.7πœ—22, and the constrains in πœ€π‘‘π‘ƒβ„“β„“ (|πœ€π‘‘πΏπœ‡πœ‡|<0.003) lead to 𝑉2>60πœ—22. If πœ—2 has its maximum value of 174.105 GeV, then 𝑉≳1.3 TeV. We note also that by |πœ€π‘’πΏπœ‡πœ‡|<0.003 we obtain |πœ—22βˆ’πœ—21|<0.006𝑉2; then, for π‘‰βˆΌ1.3 TeV and πœ—2=174 GeV, we obtain 142 GeV<πœ—1<201 GeV. We therefore cannot predict any hierarchy to the VEV’s πœ—1 and πœ—2. Based on those results, we obtain the following inferior limits for the new gauge bosons masses: 𝑀𝐾𝐼=π‘€π‘ξ…ž>610GeV,π‘€πΎξ…ž>613GeV,𝑀𝐾𝑅>740GeV.(5.1)

6. Conclusion

We presented in this work a procedure to show that models with extended gauge symmetries π‘†π‘ˆ(3)πΆΓ—π‘†π‘ˆ(3)πΏΓ—π‘ˆ(1)𝑋 can lead to neutrino nonstandard interactions, respecting the Standard Model Gauge symmetry π‘†π‘ˆ(3)πΆΓ—π‘†π‘ˆ(2)πΏΓ—π‘ˆ(1)π‘Œ, without spoiling the available experimental data and reproducing the known phenomenology at low energies. We also have shown that with an assumption about a mass hierarchy for the Higgs triplets VEV’s we could qualitatively address the mass hierarchy problem in standard model. Finally we obtained limits for the triplets VEV’s based on limits for NSI in cross-section experiments.

We believe that the class of model presented here is an interesting theoretical possibility to look for new physics beyond SM. We restrained our work to a simple scenario, but flavor-changing interactions can be naturally introduced in the model, leading to new constraints on NSI.

Acknowledgments

The authors would like to thank Alex Dias and Marcelo Guzzo for valuable discussions. One of them (M. Medina) would like to thank CNPq for financial support.