Advances in High Energy Physics The latest articles from Hindawi Publishing Corporation © 2015 , Hindawi Publishing Corporation . All rights reserved. Regular Bulk Solutions in Brane-Worlds with Inhomogeneous Dust and Generalized Dark Radiation Thu, 29 Jan 2015 17:23:48 +0000 From the dynamics of a brane-world with matter fields present in the bulk, the bulk metric and the black string solution near the brane are generalized, when both the dynamics of inhomogeneous dust/generalized dark radiation on the brane-world and inhomogeneous dark radiation in the bulk as well are considered as exact dynamical collapse solutions. Based on the analysis on the inhomogeneous static exterior of a collapsing sphere of homogeneous dark radiation on the brane, the associated black string warped horizon is studied, as well as the 5D bulk metric near the brane. Moreover, the black string and the bulk are shown to be more regular upon time evolution, for suitable values for the dark radiation parameter in the model, by analyzing the soft physical singularities. A. Herrera-Aguilar, A. M. Kuerten, and Roldão da Rocha Copyright © 2015 A. Herrera-Aguilar et al. All rights reserved. Through Neutrino Eyes: The Search for New Physics Thu, 29 Jan 2015 13:48:24 +0000 Abhijit Samanta, David Latimer, and Michael A. Schmidt Copyright © 2015 Abhijit Samanta et al. All rights reserved. Searching for Neutrinoless Double-Beta Decay of 130Te with CUORE Wed, 28 Jan 2015 12:41:15 +0000 Neutrinoless double-beta (0) decay is a hypothesized lepton-number-violating process that offers the only known means of asserting the possible Majorana nature of neutrino mass. The Cryogenic Underground Observatory for Rare Events (CUORE) is an upcoming experiment designed to search for 0 decay of 130Te using an array of 988 TeO2 crystal bolometers operated at 10 mK. The detector will contain 206 kg of 130Te and have an average energy resolution of 5 keV; the projected 0 decay half-life sensitivity after five years of livetime is 1.6 × 1026 y at 1 (9.5 × 1025 y at the 90% confidence level), which corresponds to an upper limit on the effective Majorana mass in the range 40–100 meV (50–130 meV). In this paper, we review the experimental techniques used in CUORE as well as its current status and anticipated physics reach. D. R. Artusa, F. T. Avignone III, O. Azzolini, M. Balata, T. I. Banks, G. Bari, J. Beeman, F. Bellini, A. Bersani, M. Biassoni, C. Brofferio, C. Bucci, X. Z. Cai, A. Camacho, L. Canonica, X. G. Cao, S. Capelli, L. Carbone, L. Cardani, M. Carrettoni, N. Casali, D. Chiesa, N. Chott, M. Clemenza, S. Copello, C. Cosmelli, O. Cremonesi, R. J. Creswick, I. Dafinei, A. Dally, V. Datskov, A. De Biasi, M. M. Deninno, S. Di Domizio, M. L. di Vacri, L. Ejzak, D. Q. Fang, H. A. Farach, M. Faverzani, G. Fernandes, E. Ferri, F. Ferroni, E. Fiorini, M. A. Franceschi, S. J. Freedman, B. K. Fujikawa, A. Giachero, L. Gironi, A. Giuliani, J. Goett, P. Gorla, C. Gotti, T. D. Gutierrez, E. E. Haller, K. Han, K. M. Heeger, R. Hennings-Yeomans, H. Z. Huang, R. Kadel, K. Kazkaz, G. Keppel, Yu. G. Kolomensky, Y. L. Li, C. Ligi, X. Liu, Y. G. Ma, C. Maiano, M. Maino, M. Martinez, R. H. Maruyama, Y. Mei, N. Moggi, S. Morganti, T. Napolitano, S. Nisi, C. Nones, E. B. Norman, A. Nucciotti, T. O’Donnell, F. Orio, D. Orlandi, J. L. Ouellet, M. Pallavicini, V. Palmieri, L. Pattavina, M. Pavan, M. Pedretti, G. Pessina, V. Pettinacci, G. Piperno, C. Pira, S. Pirro, E. Previtali, V. Rampazzo, C. Rosenfeld, C. Rusconi, E. Sala, S. Sangiorgio, N. D. Scielzo, M. Sisti, A. R. Smith, L. Taffarello, M. Tenconi, F. Terranova, W. D. Tian, C. Tomei, S. Trentalange, G. Ventura, M. Vignati, B. S. Wang, H. W. Wang, L. Wielgus, J. Wilson, L. A. Winslow, T. Wise, A. Woodcraft, L. Zanotti, C. Zarra, B. X. Zhu, and S. Zucchelli Copyright © 2015 D. R. Artusa et al. All rights reserved. Beyond Standard Model Searches in the MiniBooNE Experiment Wed, 28 Jan 2015 08:15:08 +0000 The MiniBooNE experiment has contributed substantially to beyond standard model searches in the neutrino sector. The experiment was originally designed to test the  eV2 region of the sterile neutrino hypothesis by observing () charged current quasielastic signals from a () beam. MiniBooNE observed excesses of and candidate events in neutrino and antineutrino mode, respectively. To date, these excesses have not been explained within the neutrino standard model (SM); the standard model extended for three massive neutrinos. Confirmation is required by future experiments such as MicroBooNE. MiniBooNE also provided an opportunity for precision studies of Lorentz violation. The results set strict limits for the first time on several parameters of the standard-model extension, the generic formalism for considering Lorentz violation. Most recently, an extension to MiniBooNE running, with a beam tuned in beam-dump mode, is being performed to search for dark sector particles. This review describes these studies, demonstrating that short baseline neutrino experiments are rich environments in new physics searches. Teppei Katori and Janet M. Conrad Copyright © 2015 Teppei Katori and Janet M. Conrad. All rights reserved. Regularization of Gravity Theories and Local Lorentz Transformation Mon, 26 Jan 2015 09:49:24 +0000 We regularized the field equations of gravity theories such that the effect of local Lorentz transformation (LLT), in the case of spherical symmetry, is removed. A “general tetrad field,” with an arbitrary function of radial coordinate preserving spherical symmetry, is provided. We split that tetrad field into two matrices; the first represents a LLT, which contains an arbitrary function, and the second matrix represents a proper tetrad field which is a solution to the field equations of gravitational theory (which are not invariant under LLT). This “general tetrad field” is then applied to the regularized field equations of . We show that the effect of the arbitrary function which is involved in the LLT invariably disappears. Gamal G. L. Nashed Copyright © 2015 Gamal G. L. Nashed. All rights reserved. Minimal Length Effects on Tunnelling from Spherically Symmetric Black Holes Thu, 22 Jan 2015 14:24:49 +0000 We investigate effects of the minimal length on quantum tunnelling from spherically symmetric black holes using the Hamilton-Jacobi method incorporating the minimal length. We first derive the deformed Hamilton-Jacobi equations for scalars and fermions, both of which have the same expressions. The minimal length correction to the Hawking temperature is found to depend on the black hole’s mass and the mass and angular momentum of emitted particles. Finally, we calculate a Schwarzschild black hole's luminosity and find the black hole evaporates to zero mass in infinite time. Benrong Mu, Peng Wang, and Haitang Yang Copyright © 2015 Benrong Mu et al. All rights reserved. Direct Dark Matter Search Thu, 22 Jan 2015 11:46:56 +0000 Anselmo Meregaglia, Davide Franco, Marcello Messina, Claudio Montanari, and Francesco Pietropaolo Copyright © 2015 Anselmo Meregaglia et al. All rights reserved. Scalar Form Factor of the Pion in the Kroll-Lee-Zumino Field Theory Wed, 21 Jan 2015 12:54:48 +0000 The renormalizable Kroll-Lee-Zumino field theory of pions and a neutral rho-meson is used to determine the scalar form factor of the pion in the space-like region at next-to-leading order. Perturbative calculations in this framework are parameter-free, as the masses and the rho-pion-pion coupling are known from experiment. Results compare favorably with lattice QCD calculations. C. A. Dominguez, M. Loewe, and M. Lushozi Copyright © 2015 C. A. Dominguez et al. All rights reserved. Retracted: Performance of Water-Based Liquid Scintillator: An Independent Analysis Tue, 20 Jan 2015 11:09:13 +0000 Advances in High Energy Physics Copyright © 2015 Advances in High Energy Physics. All rights reserved. The DarkSide Multiton Detector for the Direct Dark Matter Search Tue, 20 Jan 2015 09:20:42 +0000 Although the existence of dark matter is supported by many evidences, based on astrophysical measurements, its nature is still completely unknown. One major candidate is represented by weakly interacting massive particles (WIMPs), which could in principle be detected through their collisions with ordinary nuclei in a sensitive target, producing observable low-energy (<100 keV) nuclear recoils. The DarkSide program aims at the WIPMs detection using a liquid argon time projection chamber (LAr-TPC). In this paper we quickly review the DarkSide program focusing in particular on the next generation experiment DarkSide-G2, a 3.6-ton LAr-TPC. The different detector components are described as well as the improvements needed to scale the detector from DarkSide-50 (50 kg LAr-TPC) up to DarkSide-G2. Finally, the preliminary results on background suppression and expected sensitivity are presented. C. E. Aalseth, P. Agnes, A. Alton, K. Arisaka, D. M. Asner, H. O. Back, B. Baldin, K. Biery, G. Bonfini, M. Bossa, A. Brigatti, J. Brodsky, F. Budano, L. Cadonati, M. Cadoni, F. Calaprice, N. Canci, A. Candela, H. Cao, M. Cariello, P. Cavalcante, A. Chepurnov, A. G. Cocco, C. Condon, L. Crippa, D. D’Angelo, M. D’Incecco, S. Davini, M. De Deo, A. Derbin, A. Devoto, F. Di Eusanio, E. Edkins, A. Empl, A. Fan, G. Fiorillo, K. Fomenko, G. Forster, M. Foxe, D. Franco, F. Gabriele, C. Galbiati, A. Goretti, L. Grandi, M. Gromov, M. Y. Guan, Y. Guardincerri, B. Hackett, K. Herner, A. Hime, P. Humble, E. Hungerford, Al. Ianni, An. Ianni, D. E. Jaffe, C. Jollet, K. Keeter, C. Kendziora, S. Kidner, V. Kobychev, G. Koh, D. Korablev, G. Korga, A. Kurlej, P. X. Li, M. Lissia, P. Lombardi, L. Ludhova, S. Luitz, G. Lukyachenko, Y. Q. Ma, I. Machulin, A. Mandarano, S. M. Mari, J. Maricic, L. Marini, D. Markov, J. Martoff, A. Meregaglia, E. Meroni, P. D. Meyers, T. Miletic, R. Milincic, M. Montuschi, M. E. Monzani, P. Mosteiro, B. Mount, V. Muratova, P. Musico, D. Montanari, A. Nelson, S. Odrowski, A. Odrzywolek, J. L. Orrell, M. Orsini, F. Ortica, L. Pagani, M. Pallavicini, E. Pantic, S. Parmeggiano, B. Parsells, K. Pelczar, N. Pelliccia, S. Perasso, L. Perasso, A. Pocar, S. Pordes, D. Pugachev, H. Qian, K. Randle, G. Ranucci, A. Razeto, K. Recine, B. Reinhold, A. Renshaw, A. Romani, N. Rossi, B. Rossi, S. D. Rountree, D. Sablone, P. Saggese, R. Saldanha, W. Sands, S. Sangiorgio, E. Segreto, D. Semenov, E. Shields, M. Skorokhvatov, M. Smallcomb, O. Smirnov, A. Sotnikov, Y. Suvurov, R. Tartaglia, J. Tatarowicz, G. Testera, A. Tonazzo, E. Unzhakov, R. B. Vogelaar, M. Wada, S. E. Walker, H. Wang, Y. Wang, A. W. Watson, S. Westerdale, R. Williams, M. Wojcik, J. Xu, C. G. Yang, J. Yoo, B. Yu, S. Zavatarelli, W. L. Zhong, and G. Zuzel Copyright © 2015 C. E. Aalseth et al. All rights reserved. Weyl-Invariant Extension of the Metric-Affine Gravity Tue, 20 Jan 2015 06:23:32 +0000 Metric-affine geometry provides a nontrivial extension of the general relativity where the metric and connection are treated as the two independent fundamental quantities in constructing the spacetime (with nonvanishing torsion and nonmetricity). In this paper, we study the generic form of action in this formalism and then construct the Weyl-invariant version of this theory. It is shown that, in Weitzenböck space, the obtained Weyl-invariant action can cover the conformally invariant teleparallel action. Finally, the related field equations are obtained in the general case. R. Vazirian, M. R. Tanhayi, and Z. A. Motahar Copyright © 2015 R. Vazirian et al. All rights reserved. A Study of Universal Thermodynamics in Brane World Scenario Mon, 19 Jan 2015 09:38:10 +0000 A study of Universal thermodynamics is done in the framework of RSII brane model and DGP brane scenario. The Universe is chosen as FRW model bounded by apparent or event horizon. Assuming extended Hawking temperature on the horizon, the unified first law is examined for perfect fluid (with constant equation of state) and Modified Chaplygin Gas model. As a result there is a modification of Bekenstein entropy on the horizons. Further the validity of the generalized second law of thermodynamics and thermodynamical equilibrium are also investigated. Saugata Mitra, Subhajit Saha, and Subenoy Chakraborty Copyright © 2015 Saugata Mitra et al. All rights reserved. Null Geodesics and Gravitational Lensing in a Nonsingular Spacetime Tue, 13 Jan 2015 12:28:07 +0000 The null geodesics and gravitational lensing in a nonsingular spacetime are investigated. According to the nature of the null geodesics, the spacetime is divided into several cases. In the weak deflection limit, we find the influence of the nonsingularity parameter on the positions and magnifications of the images is negligible. In the strong deflection limit, the coefficients and observables for the gravitational lensing in a nonsingular black hole background and a weakly nonsingular spacetime are obtained. Comparing these results, we find that, in a weakly nonsingular spacetime, the relativistic images have smaller angular position and relative magnification but larger angular separation than those of a nonsingular black hole. These results might offer a way to probe the spacetime nonsingularity parameter and put a bound on it by the astronomical instruments in the near future. Shao-Wen Wei, Yu-Xiao Liu, and Chun-E Fu Copyright © 2015 Shao-Wen Wei et al. All rights reserved. Toy Models of Universe with an Effective Varying -Term in Lyra Manifold Mon, 12 Jan 2015 13:50:35 +0000 Research on the accelerated expansion of our Universe captures a lot of attention. The dark energy (DE) is a way to explain it. In this paper we will consider scalar field quintessence DE with EoS, where the dynamics of the DE models related to the dynamics of the scalar field. We are interested in the study of the behavior of the Universe in the presence of interacting quintessence DE models in Lyra manifold with a varying . In a considered framework we also would like to propose a new form for . We found that the models correspond to the transit Universe, which will enter the accelerated expansion phase and will remain there with a constant deceleration parameter . We found also that the is a decreasing function which takes a small positive value with and dominating in the old Universe. Observational constraints are applied and causality issue via is discussed as a possible way to either reject or accept the models. Martiros Khurshudyan Copyright © 2015 Martiros Khurshudyan. All rights reserved. BPS Center Vortices in Nonrelativistic Gauge Models with Adjoint Higgs Fields Thu, 08 Jan 2015 07:20:09 +0000 We propose a class of Yang-Mills models, with adjoint Higgs fields, that accept BPS center vortex equations. The lack of a local magnetic flux that could serve as an energy bound is circumvented by including a new term in the energy functional. This term tends to align, in the Lie algebra, the magnetic field and one of the adjoint Higgs fields. Finally, a reduced set of equations for the center vortex profile functions is obtained (for ). In particular, BPS vortices come in three colours and three anticolours, obtained from an ansatz based on the defining representation and its conjugate. L. E. Oxman Copyright © 2015 L. E. Oxman. All rights reserved. Constraining the Parameters of Modified Chaplygin Gas in Einstein-Aether Gravity Tue, 30 Dec 2014 00:10:20 +0000 We have assumed FRW model of the universe in Einstein-Aether gravity filled with dark matter and modified Chaplygin gas (MCG) type dark energy. We present the Hubble parameter in terms of some unknown parameters and observational parameters with the redshift z. From observed Hubble data (OHD) set (12 points), we have obtained the bounds of the arbitrary parameters of MCG by minimizing the test. Next due to joint analysis of BAO and CMB observations, we have also obtained the best fit values and the bounds of the parameters by fixing some other parameters. We have also taken type Ia supernovae data set (union 2 data set with 557 data points). Next due to joint analysis with SNe, we have obtained the best fit values of parameters. The best fit values and bounds of the parameters are obtained by 66%, 90%, and 99% confidence levels for OHD, OHD + BAO, OHD + BAO + CMB, and OHD + BAO + CMB + SNe joint analysis. The distance modulus against redshift z for our theoretical MCG model in Einstein-Aether gravity has been tested for the best fit values of the parameters and the observed SNe Ia union2 data sample. Ujjal Debnath Copyright © 2014 Ujjal Debnath. All rights reserved. CP Violation for in QCD Factorization Wed, 24 Dec 2014 00:10:14 +0000 In the QCD factorization (QCDF) approach we study the direct CP violation in via the mixing mechanism. We find that the CP violation can be enhanced by double mixing when the masses of the pairs are in the vicinity of the resonance, and the maximum CP violation can reach 28%. We also compare the results from the naive factorization and the QCD factorization. Gang Lü, Jia-Qi Lei, and Xin-Heng Guo Copyright © 2014 Gang Lü et al. All rights reserved. Gurzadyan’s Problem 5 and Improvement of Softenings for Cosmological Simulations Using the PP Method Mon, 22 Dec 2014 11:16:18 +0000 This paper is devoted to different modifications of two standard softenings of the gravitational attraction (namely, the Plummer and Hernquist softenings), which are commonly used in cosmological simulations based on the particle-particle (PP) method, and their comparison. It is demonstrated that some of the proposed alternatives lead to almost the same accuracy as in the case of the pure Newtonian interaction, even despite the fact that the force resolution is allowed to equal half the minimum interparticle distance. The revealed way of precision improvement gives an opportunity to succeed in solving Gurzadyan’s Problem 5 and bring modern computer codes up to a higher standard. Maxim Eingorn Copyright © 2014 Maxim Eingorn. All rights reserved. Cosmic Baryon Asymmetry in Different Neutrino Mass Models with Mixing Angles Sun, 21 Dec 2014 07:30:02 +0000 We investigate the comparative studies of cosmological baryon asymmetry in different neutrino mass models with and without by considering the three-diagonal form of Dirac neutrino mass matrices and the three aspects of leptogenesis, unflavoured, flavoured, and nonthermal. We found that the estimations of any models with are consistent in all the three stages of calculations of leptogenesis and the results are better than the predictions of any models without which are consistent in a piecemeal manner with the observational data in all the three stages of leptogenesis calculations. For the normal hierarchy of Type-IA with charged lepton matrix, model with and without predicts inflaton mass required to produce the observed baryon asymmetry to be  GeV and  GeV, and the corresponding reheating temperatures are  GeV and  GeV respectively. These predictions are not in conflict with the gravitino problem which required the reheating temperature to be below  GeV. And these values apply to the recent discovery of Higgs boson of mass 125 GeV. One can also have the right order of relic dark matter abundance only if the reheating temperature is bounded to below  GeV. Ng. K. Francis Copyright © 2014 Ng. K. Francis. All rights reserved. Massive Conformal Gravity Sun, 14 Dec 2014 08:11:37 +0000 We construct a massive theory of gravity that is invariant under conformal transformations. The massive action of the theory depends on the metric tensor and a scalar field, which are considered the only field variables. We find the vacuum field equations of the theory and analyze its weak-field approximation and Newtonian limit. F. F. Faria Copyright © 2014 F. F. Faria. All rights reserved. Minimal Length and the Existence of Some Infinitesimal Quantities in Quantum Theory and Gravity Wed, 10 Dec 2014 06:56:02 +0000 It is demonstrated that provided a theory involves a minimal length, this theory must be free from such infinitesimal quantities as infinitely small variations in surface of the holographic screen, its volume, and entropy. The corresponding infinitesimal quantities in this case must be replaced by the “minimal variations possible”—finite quantities dependent on the existent energies. As a result, the initial low-energy theory (quantum theory or general relativity) inevitably must be replaced by a minimal length theory that gives very close results but operates with absolutely other mathematical apparatus. A. E. Shalyt-Margolin Copyright © 2014 A. E. Shalyt-Margolin. All rights reserved. Irreversible Thermodynamics of the Universe: Constraints from Planck Data Thu, 04 Dec 2014 12:33:11 +0000 The present work deals with irreversible universal thermodynamics. The homogenous and isotropic flat model of the universe is chosen as open thermodynamical system and nonequilibrium thermodynamics comes into picture. For simplicity, entropy flow is considered only due to heat conduction. Further, due to Maxwell-Cattaneo modified Fourier law for nonequilibrium phenomenon, the temperature satisfies damped wave equation instead of heat conduction equation. Validity of generalized second law of thermodynamics (GSLT) has been investigated for universe bounded by apparent or event horizon with cosmic substratum as perfect fluid with constant or variable equation of state or interacting dark species. Finally, we have used three Planck data sets to constrain the thermal conductivity λ and the coupling parameter . These constraints must be satisfied in order for GSLT to hold for universe bounded by apparent or event horizons. Subhajit Saha, Atreyee Biswas, and Subenoy Chakraborty Copyright © 2014 Subhajit Saha et al. All rights reserved. Interaction between Dark Matter and Dark Energy and the Cosmological Coincidence Problem Tue, 02 Dec 2014 09:54:32 +0000 We consider a quintessence model of dark energy inspired by scalar-tensor theories of gravity where the scalar field is nonminimally coupled to gravity and dark matter. By considering exponential potential as self-interaction potential, the stability and existence of the critical points are discussed in details. With nonminimally coupled dark sector with gravity, we obtain scaling solutions to address the coincidence problem by considering complex velocity for dark matter. The statefinder diagnostic shows that the equation of state reaches model in the future. Kourosh Nozari, Noushin Behrouz, and Narges Rashidi Copyright © 2014 Kourosh Nozari et al. All rights reserved. Dirac Equation under Scalar and Vector Generalized Isotonic Oscillators and Cornell Tensor Interaction Sun, 30 Nov 2014 11:40:33 +0000 Spin and pseudospin symmetries of Dirac equation are solved under scalar and vector generalized isotonic oscillators and Cornell potential as a tensor interaction for arbitrary quantum number via the analytical ansatz approach. The spectrum of the system is numerically reported for typical values of the potential parameters. H. Hassanabadi, E. Maghsoodi, Akpan N. Ikot, and S. Zarrinkamar Copyright © 2014 H. Hassanabadi et al. All rights reserved. Galactic Halo Wormhole Solutions in Gravity Thu, 27 Nov 2014 13:22:03 +0000 The proposal of galactic halo region is based on the idea that dark halos contain some characteristics needed to support traversable wormhole solutions. We explore wormhole solutions in this region in the framework of generalized teleparallel gravity. We consider static spherically symmetric wormhole spacetime with flat galactic rotational curves and obtain expressions of matter components for nondiagonal tetrad. The effective energy-momentum tensor leads to the violation of energy conditions which may impose condition on the normal matter to satisfy these conditions. We take two well-known models in exponential and logarithmic forms to discuss wormhole solutions as well as the equilibrium condition. It is concluded that wormhole solutions violating weak energy condition are obtained for both models with stable configuration. M. Sharif and Shamaila Rani Copyright © 2014 M. Sharif and Shamaila Rani. All rights reserved. Chemical Evolution of Strongly Interacting Quark-Gluon Plasma Mon, 24 Nov 2014 14:00:25 +0000 At very initial stage of relativistic heavy ion collisions a wave of quark-gluon matter is produced from the break-up of the strong color electric field and then thermalizes at a short time scale (1 fm/c). However, the quark-gluon plasma (QGP) system is far out of chemical equilibrium, especially for the heavy quarks which are supposed to reach chemical equilibrium much late. In this paper a continuing quark production picture for strongly interacting QGP system is derived, using the quark number susceptibilities and the equation of state; both of them are from the results calculated by the Wuppertal-Budapest lattice QCD collaboration. We find that the densities of light quarks increase by 75% from the temperature  MeV to  MeV, while the density of strange quark annihilates by 18% in the temperature region. We also offer a discussion on how this late production of quarks affects the final charge-charge correlations. Ying-Hua Pan and Wei-Ning Zhang Copyright © 2014 Ying-Hua Pan and Wei-Ning Zhang. All rights reserved. Perihelion Precession and Deflection of Light in the General Spherically Symmetric Spacetime Mon, 24 Nov 2014 13:50:06 +0000 The perihelion precession and deflection of light have been investigated in the 4-dimensional general spherically symmetric spacetime, and the master equation is obtained. As the application of this master equation, the Reissner-Nordstorm-AdS solution and Clifton-Barrow solution in gravity have been taken as examples. We find that both the electric charge and gravity can affect the perihelion precession and deflection of light, while the cosmological constant can only effect the perihelion precession. Moreover, we clarify a subtlety in the deflection of light in the solar system that the possible sun’s electric charge is usually used to interpret the gap between the experiment data and theoretical result. However, after also considering the effect from the sun’s same electric charge on the perihelion precession of Mercury, we can find that it is not the truth. Ya-Peng Hu, Hongsheng Zhang, Jun-Peng Hou, and Liang-Zun Tang Copyright © 2014 Ya-Peng Hu et al. All rights reserved. Novel Quantum Encryption Algorithm Based on Multiqubit Quantum Shift Register and Hill Cipher Mon, 24 Nov 2014 13:24:04 +0000 Based on a quantum shift register, a novel quantum block cryptographic algorithm that can be used to encrypt classical messages is proposed. The message is encoded and decoded by using a code generated by the quantum shift register. The security of this algorithm is analysed in detail. It is shown that, in the quantum block cryptographic algorithm, two keys can be used. One of them is the classical key that is used in the Hill cipher algorithm where Alice and Bob use the authenticated Diffie Hellman key exchange algorithm using the concept of digital signature for the authentication of the two communicating parties and so eliminate the man-in-the-middle attack. The other key is generated by the quantum shift register and used for the coding of the encryption message, where Alice and Bob share the key by using the BB84 protocol. The novel algorithm can prevent a quantum attack strategy as well as a classical attack strategy. The problem of key management is discussed and circuits for the encryption and the decryption are suggested. Rifaat Zaidan Khalaf and Alharith Abdulkareem Abdullah Copyright © 2014 Rifaat Zaidan Khalaf and Alharith Abdulkareem Abdullah. All rights reserved. An Analytical Study of the Nonsinglet Spin Structure Function Up to NLO in the DGLAP Approach at Small Sun, 23 Nov 2014 12:47:23 +0000 A next-to-leading order QCD calculation of nonsinglet spin structure function at small is presented using the analytical methods: Lagrange’s method and method of characteristics. The compatibility of these analytical approaches is tested by comparing the analytical solutions with the available polarized global fits. Neelakshi N. K. Borah and D. K. Choudhury Copyright © 2014 Neelakshi N. K. Borah and D. K. Choudhury. All rights reserved. Equal Area Laws and Latent Heat for -Dimensional RN-AdS Black Hole Wed, 19 Nov 2014 09:39:22 +0000 We study the equal area laws of -dimensional RN-AdS black hole. We choose two kinds of phase diagrams, and . We employ the equal area laws to find an isobar which is the real two-phase coexistence line. Our calculation is much simpler to derive the critical value of the thermodynamic quantities. According to the thermodynamic quantities, we also study the latent heat of the black hole. Li-Chun Zhang, Hui-Hua Zhao, Ren Zhao, and Meng-Sen Ma Copyright © 2014 Li-Chun Zhang et al. All rights reserved.