About this Journal Submit a Manuscript Table of Contents
Advances in Multimedia
Volume 2011 (2011), Article ID 310762, 18 pages
http://dx.doi.org/10.1155/2011/310762
Research Article

Utilizing Implicit User Feedback to Improve Interactive Video Retrieval

1Centre for Research and Technology Hellas, Informatics and Telematics Institute, 6th Klm Charilaou-Thermi Road, 57001 Thessaloniki, Greece
2Queen Mary, University of London, Mile End Road, London E1 4NS, UK

Received 1 September 2010; Accepted 3 January 2011

Academic Editor: Andrea Prati

Copyright © 2011 Stefanos Vrochidis et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. S. Lew, N. Sebe, C. Djeraba, and R. Jain, “Content-based multimedia information retrieval: state of the art and challenges,” ACM Transactions on Multimedia Computing, Communications and Applications, vol. 2, no. 1, pp. 1–19, 2006. View at Scopus
  2. N. Sebe, M. S. Lew, X. Zhou, T. S. Huang, and E. M. Bakker, “The state of the art in image and video retrieval,” in Proceedings of the 2nd International Conference on Image and Video Retrieval, pp. 1–8, Urbana, Ill, USA, July 2003. View at Scopus
  3. M. L. Kherfi, D. Brahmi, and D. Ziou, “Combining visual features with semantics for a more effective image retrieval,” in Proceedings of the 17th International Conference on Pattern Recognition (ICPR '04), vol. 2, pp. 961–964, Cambridge, UK, August 2004. View at Scopus
  4. S. F. Chang, R. Manmatha, and T. S. Chua, “Combining text and audio-visual features in video indexing,” in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '05), vol. 5, pp. V1005–V1008, Philadelphia, Pa, USA, March 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Vrochidis, C. Doulaverakis, A. Gounaris, E. Nidelkou, L. Makris, and I. Kompatsiaris, “A hybrid ontology and visual-based retrieval model for cultural heritage multimedia collections,” International Journal of Metadata, Semantics and Ontologies, vol. 3, no. 3, pp. 167–182, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. C. G. M. Snoek and M. Worring, “Multimodal video indexing: a review of the state-of-the-art,” Multimedia Tools and Applications, vol. 25, no. 1, pp. 5–35, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. F. Hopfgartner, D. Vallet, M. Halvey, and J. Jose, “Search trails using user feedback to improve video search,” in Proceedings of the 16th ACM International Conference on Multimedia (MM '08), pp. 339–348, Vancouver, Canada, October 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. X. S. Zhou, Y. Wu, I. Cohen, and T. S. Huang, “Relevance feedback in content-based image and video retrieval,” in Proceedings of the 4th European Workshop on Image Analysis for Multimedia Interactive Services, pp. 1–12, Queen Mary University of London, 2003.
  9. G. Giacinto and F. Roli, “Instance-based relevance feedback for image retrieval,” in Advances in Neural Information Processing Systems, L. K. Saul, Y. Weiss , and L. Bottou, Eds., vol. 17, pp. 489–496, MIT Press, 2005.
  10. C. Gurrin, D. Johansen, and A. F. Smeaton, “Supporting relevance feedback in video search,” in Proceedings of the 28th European Conference on IR Research (ECIR '06), pp. 561–564, London, UK, 2006.
  11. T. Joachims, “Optimizing search engines using clickthrough data,” in Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’02), pp. 133–142, Alberta, Canada, July 2002.
  12. F. Radlinski and T. Joachims, “Query chains: learning to rank from implicit feedback,” in Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 239–248, Chicago, Ill, USA, August 2005. View at Publisher · View at Google Scholar
  13. D. M. Nichols, “Implicit ratings and filtering,” in Proceedings of the 5th DELOS Workshop on Filtering and Collaborative Filtering, pp. 31–36, Budapest, Hungary, November 1997.
  14. B. Yang, T. Mei, X. S. Hua, L. Yang, S. Q. Yang, and M. Li, “Online video recommendation based on multimodal fusion and relevance feedback,” in Proceedings of the 6th ACM International Conference on Image and Video Retrieval (CIVR '07), pp. 73–80, Amesterdam, The Netherland, July 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Vrochidis, I. Kompatsiaris, and I. Patras, “Optimizing visual search with implicit user feedback in interactive video retrieval,” in Proceedings of the ACM International Conference on Image and Video Retrieval I (CIVR '10), pp. 274–281, July 2010. View at Publisher · View at Google Scholar
  16. S. Vrochidis, I. Kompatsiaris, and I. Patras, “Exploiting implicit user feedback in interactive video retrieval,” in Proceedings of the 11th International Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS '10), Desenzano del Garda, Italy, April 2010.
  17. Y. Zhang, H. Fu, Z. Liang, Z. Chi, and D. Feng, “Eye movement as an interaction mechanism for relevance feedback in a content-based image retrieval system,” in Proceedings of the Eye Tracking Research and Applications Symposium (ETRA '10), pp. 37–40, Austin, Tex, USA, 2010. View at Publisher · View at Google Scholar
  18. A. Yazdani, J. S. Lee, and T. Ebrahimi, “Implicit emotional tagging of multimedia using EEG signals and brain computer interface,” in Proceedings of SIGMM Workshop on Social Media, pp. 81–88, New York, NY, USA, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. D. Kelly and J. Teevan, “Implicit feedback for inferring user preference: a bibliography,” SIGIR Forum, vol. 32, no. 2, 2003.
  20. M. Claypool, P. Le, M. Wased, and D. Brown, “Implicit interest indicators,” in Proceedings of the International Conference on Intelligent User Interfaces (IUI '01), pp. 33–40, Santa Fe, Mex, USA, 2001.
  21. R. White, I. Ruthven, and J. M. Jose, “The use of implicit evidence for relevance feedback in web retrieval,” in Proceedings of the 24th BCS-IRSG European Colloquium on IR Research: Advances in Information Retrieval, pp. 93–109, Glasgow, UK, 2002.
  22. F. Hopfgartner and J. Jose, “Evaluating the implicit feedback models for adaptive video retrieval,” in Proceedings of the International on Multimedia Information Retrieval, pp. 323–331, Bavaria, Germany, 2007. View at Publisher · View at Google Scholar
  23. D. Vallet, F. Hopfgartner, and J. Jose, “Use of implicit graph for recommending relevant videos: a simulated evaluation,” in Proceedings of the 30th Annual European Conference on Information Retrieval (ECIR '08), vol. 4956 of Lecture Notes in Computer Science, pp. 199–210, Glasgow, Scotland, 2008. View at Publisher · View at Google Scholar
  24. T. Joachims, “Training linear SVMs in linear time,” in Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '06), pp. 217–226, Philadelphia, Pa, USA, August 2006. View at Scopus
  25. T. Joachims, “A support vector method for multivariate performance measures,” in Proceedings of the 22nd International Conference on Machine Learning (ICML '05), pp. 377–384, Bonn, Germany, August 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Hanjalic, R. L. Lagendijk, and J. Biemond, “A new method for key frame based video content representation,” in Image Databases and Multimedia Search, A. Smeulders and R. Jain, Eds., pp. 97–107, World Scientific, 1997.
  27. S. U. Naci, U. Damnjanovic, B. Mansencal et al., “The COST292 experimental framework for rushes summarization task,” in Proceedings of TRECVID Workshop, pp. 40–44, Gaithersburg, Md, USA, 2008. View at Publisher · View at Google Scholar
  28. Kinosearch Search Engine Library, http://www.rectangular.com/kinosearch/.
  29. M. F. Porter, “An algorithm for suffix stripping,” Program, vol. 14, pp. 130–137, 1980.
  30. S. E. Robertson and K. S. Jones, “Simple, proven approaches to text retrieval,” Tech. Rep. UCAM-CL-TR-356, University of Cambridge, Computer Laboratory, Cambridge, UK, 1994.
  31. MPEG-7 XM Software, http://www.lis.ei.tum.de/research/bv/topics/mmdb/e_mpeg7.html.
  32. A. Guttman, “R-trees: a dynamic index structure for spatial searching,” in Proceedings of the ACM International Conference on Management and Data (SIGMOD ’84), pp. 47–57, New York, NY, USA, 1984. View at Scopus
  33. S. Vrochidis, P. King, L. Makris et al., “MKLab interactive video retrieval system,” in Proceedings of the ACM International Conference on Image and Video Retrieval (CIVR '08), pp. 563–563, Niagara Falls, Canada, 2008. View at Publisher · View at Google Scholar
  34. E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische Mathematik, vol. 1, no. 1, pp. 269–271, 1959. View at Publisher · View at Google Scholar · View at Scopus
  35. R. W. Floyd, “Algorithm 97: shortest path,” Communications of the ACM, vol. 5, no. 6, p. 345, 1962.