About this Journal Submit a Manuscript Table of Contents
Advances in Multimedia
Volume 2012 (2012), Article ID 973418, 19 pages
http://dx.doi.org/10.1155/2012/973418
Research Article

2D+t Wavelet Domain Video Watermarking

Department of Electronic and Electrical Engineering, The University of Sheffield, Sheffield S1 3JD, UK

Received 29 November 2011; Revised 20 January 2012; Accepted 21 January 2012

Academic Editor: Chong Wah Ngo

Copyright © 2012 Deepayan Bhowmik and Charith Abhayaratne. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Hartung and B. Girod, “Watermarking of uncompressed and compressed video,” Signal Processing, vol. 66, no. 3, pp. 283–301, 1998. View at Scopus
  2. H. Inoue, A. Miyazaki, T. Araki, and T. Katsura, “Digital watermark method using the wavelet transform for video data,” in Proceedings of the 1999 IEEE International Symposium on Circuits and Systems (ISCAS '99), vol. 4, pp. V-247–V-250, June 1999. View at Scopus
  3. G. Doërr and J. L. Dugelay, “A guide tour of video watermarking,” Signal Processing, vol. 18, no. 4, pp. 263–282, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. M. P. Mitrea, T. B. Zaharia, F. J. Preteux, and A. Vlad, “Video watermarking based on spread spectrum and wavelet decomposition,” in Wavelet Applications in Industrial Processing II, vol. 5607 of Proceedings of the SPIE, pp. 156–164, 2004.
  5. F. Deguillaume, G. Csurka, J. J. O'Ruanaidh, and T. Pun, “Robust 3D DFT video watermarking,” in Security and Watermarking of Multimedia Contents, vol. 3657 of Proceedings of the SPIE, pp. 113–124, 1999.
  6. J. H. Lim, D. J. Kim, H. T. Kim, and C. S. Won, “Digital video watermarking using 3D-DCT and intracubic correlation,” in Security and Watermarking of Multimedia Contents III, vol. 4314 of Proceedings of the SPIE, pp. 64–72, 2001.
  7. S. J. Kim, S. H. Lee, K. S. Moon et al., “A new digital video watermarking using the dual watermark images and 3D DWT,” in Proceedings of the IEEE Region Conference (TENCON '04), vol. 1, pp. 291–294, 2004.
  8. P. Campisi and A. Neri, “Video watermarking in the 3D-DWT domain using perceptual masking,” in IEEE International Conference on Image Processing (ICIP '05), pp. 997–1000, September 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. S. J. Choi and J. W. Woods, “Motion-compensated 3-D subband coding of video,” IEEE Transactions on Image Processing, vol. 8, no. 2, pp. 155–167, 1999. View at Scopus
  10. S. T. Hsiang and J. W. Woods, “Embedded video coding using invertible motion compensated 3-D subband/wavelet filter bank,” Signal Processing, vol. 16, no. 8, pp. 705–724, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. C. I. Podilchuk, N. S. Jayant, and N. Farvardin, “Three-dimensional subband coding of video,” IEEE Transactions on Image Processing, vol. 4, no. 2, pp. 125–139, 1995. View at Publisher · View at Google Scholar · View at Scopus
  12. P. Vinod and P. K. Bora, “Motion-compensated inter-frame collusion attack on video watermarking and a countermeasure,” IEE Proceedings on Information Security, vol. 153, no. 2, pp. 61–73, 2006.
  13. P. Vinod, G. Doërr, and P. K. Bora, “Assessing motion-coherency in video watermarking,” in Proceedings of the Multimedia and Security Workshop, pp. 114–119, September 2006. View at Scopus
  14. P. Meerwald and A. Uhl, “Blind motion-compensated video watermarking,” in Proceedings of the IEEE International Conference on Multimedia and Expo (ICME '08), pp. 357–360, June 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Andreopoulos, A. Munteanu, J. Barbarien, M. Van Der Schaar, J. Cornelis, and P. Schelkens, “In-band motion compensated temporal filtering,” Signal Processing, vol. 19, no. 7, pp. 653–673, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. F. Huo and X. Gao, “AWavelet based image watermarking scheme,” in Proceedings of the IEEE International Conference on Image Processing, pp. 2573–2576, Atlanta, Ga, USA, 2006.
  17. C. Jin and J. Peng, “A robust wavelet-based blind digital watermarking algorithm,” Information Technology Journal, vol. 5, no. 2, pp. 358–363, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. M. A. Suhail, M. S. Obaidat, S. S. Ipson, and B. Sadoun, “A comparative study of digital watermarking in JPEG and JPEG 2000 environments,” Information Sciences, vol. 151, pp. 93–105, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Barni, F. Bartolini, and A. Piva, “Improved wavelet-based watermarking through pixel-wise masking,” IEEE Transactions on Image Processing, vol. 10, no. 5, pp. 783–791, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. L. Xie and G. R. Arce, “Joint wavelet compression and authentication watermarking,” in Proceedings of the International Conference on Image Processing (ICIP '98), vol. 2, pp. 427–431, October 1998. View at Scopus
  21. D. Kundur and D. Hatzinakos, “Digital watermarking using multiresolution wavelet decomposition,” in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '98), vol. 5, pp. 2969–2972, May 1998. View at Scopus
  22. J. R. Kim and Y. S. Moon, “Robust wavelet-based digital watermarking using level-adaptive thresholding,” in International Conference on Image Processing (ICIP '99), pp. 226–230, October 1999. View at Scopus
  23. D. Bhowmik and C. Abhayaratne, “A framework for evaluating wavelet based watermarking for scalable coded digital item adaptation attacks,” in Wavelet Applications in Industrial Processing VI, vol. 7248 of Proceedings of the SPIE, San Jose, Calif, USA, January 2009.
  24. P. Meerwald, “Quantization watermarking in the JPEG2000 coding pipeline,” in Proceedings of the 5th International Working Conference on Communication and Multimedia Security, pp. 69–79, 2001.
  25. X. Fan, W. Gao, Y. Lu, and D. Zhao, “Flicking reduction in all intra frame coding,” Tech. Rep. JVT-E070, 2002.
  26. MSU Graphics & Media Lab VG, MSU Quality Measurement Tool, http://www.compression.ru/video/.