About this Journal Submit a Manuscript Table of Contents
Advances in Mechanical Engineering
Volume 2010 (2010), Article ID 284976, 9 pages
http://dx.doi.org/10.1155/2010/284976
Research Article

Application of the Rotation Matrix Natural Invariants to Impedance Control of Rotational Parallel Robots

1Dipartimento di Meccanica e Costruzione delle Macchine, Università di Genova, Via Opera Pia 15A, 16145 Genova, Italy
2Dipartimento di Meccanica, Università Politecnica delle Marche, Via Brecce Bianche 12, 60131 Ancona, Italy

Received 17 June 2009; Accepted 10 November 2009

Academic Editor: Zhen Huang

Copyright © 2010 L. Bruzzone and M. Callegari. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. H. Raibert and J. J. Craig, “Hybrid position/force control of manipulators,” Journal of Dynamic Systems, Measurement, and Control, vol. 103, pp. 126–133, 1981.
  2. N. Hogan, “Impedance control: an approach to manipulation—part I: theory,” Journal of Dynamic Systems, Measurement, and Control, vol. 107, no. 1, pp. 1–7, 1985. View at Publisher · View at Google Scholar
  3. N. Hogan, “Impedance control: an approach to manipulation—part II: implementation,” Journal of Dynamic Systems, Measurement, and Control, vol. 107, no. 1, pp. 1–9, 1985. View at Publisher · View at Google Scholar
  4. N. Hogan, “Impedance control: an approach to manipulation—part III: applications,” Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, vol. 107, no. 1, pp. 17–24, 1985. View at Publisher · View at Google Scholar
  5. D. E. Whitney, “Historical perspective and state of the art in robot force control,” International Journal of Robotics Research, vol. 6, no. 1, pp. 3–14, 1987.
  6. B. Siciliano and L. Villani, Robot Force Control, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2000.
  7. T. Yoshikawa, “Force control of robot manipulators,” in Proceedings of IEEE International Conference on Robotics and Automation, pp. 220–226, San Francisco, Calif, USA, 2000.
  8. L. Rey and R. Clavel, “The Delta robot: a position paper,” Annals of CIRP, vol. 47, pp. 347–351, 1998.
  9. V. E. Gough and S. G. Whitehall, “Universal tyre test machine,” in Proceedings of the FISITA 9th International Technical Congress, pp. 117–137, May 1962.
  10. D. Stewart, “A platform with six degrees of freedom,” Proceedings of the Institution of Mechanical Engineers, vol. 180, part 1, no. 15, pp. 371–386, 1965.
  11. K.-E. Neumann, “Robot,” US patent no. 4 732 525, 1986.
  12. J. P. Merlet, “Force-feedback control of parallel manipulators,” in Proceedings of IEEE International Conference on Robotics and Automation, vol. 3, pp. 1484–1489, Philadelphia, Pa, USA, April 1988.
  13. S. M. Satya, P. M. Ferriera, and M. W. Spong, “Hybrid control of a planar 3-Dof parallel manipulator for machining operations,” Transaction of the NAMRI/SME, vol. 23, pp. 273–280, 1995.
  14. M. Callegari and A. Suardi, “On the force-controlled assembly operations of a new parallel kinematics manipulator,” in Proceedings of IEEE Mediterranean Conference on Control and Automation, Rhodes, Greece, June 2003, IV06-02.
  15. F. Caccavale, B. Siciliano, and L. Villani, “The Tricept robot: dynamics and impedance control,” IEEE/ASME Transactions on Mechatronics, vol. 8, no. 2, pp. 263–268, 2003. View at Publisher · View at Google Scholar
  16. G. M. Acaccia, L. Bruzzone, M. Callegari, R. C. Michelini, R. M. Molfino, and R. P. Razzoli, “Functional assessment of the impedance controller of a parallely actuated robotic six d.o.f. rig,” in Proceedings of the 6th IEEE Mediterranean Conference on Control and Systems (MCCS '98), pp. 397–402, Alghero, Italy, 1998.
  17. E. D. Fasse and C. M. Gosselin, “On the spatial impedance control of Gough-Stewart platforms,” in Proceedings of IEEE International Conference on Robotics and Automation, vol. 2, pp. 1749–1754, Leuven, Belgium, 1998.
  18. E. D. Fasse and C. M. Gosselin, “Spatio-geometric impedance control of Gough-Stewart platforms,” IEEE Transactions on Robotics and Automation, vol. 15, no. 2, pp. 281–288, 1999. View at Publisher · View at Google Scholar
  19. F. Caccavale, C. Natale, B. Siciliano, and L. Villani, “Six-DOF impedance control based on angle/axis representations,” IEEE Transactions on Robotics and Automation, vol. 15, no. 2, pp. 289–300, 1999. View at Publisher · View at Google Scholar
  20. J. Angeles, Rational Kinematics, Springer, New York, NY, USA, 1988.
  21. J. M. Selig, Geometric Fondamentals of Robotics, Springer, New York, NY, USA, 2005.
  22. F. Caccavale, B. Siciliano, and L. Villani, “The role of Euler parameters in robot control,” Asian Journal of Control, vol. 1, no. 1, pp. 25–34, 1999.
  23. S. Chiaverini and B. Siciliano, “The unit quaternion: a useful tool for inverse kinematics of robot manipulators,” Systems Analysis, Modelling Simulation, vol. 35, no. 1, pp. 45–60, 1999.
  24. I. A. Bonev and J. Ryu, “A new approach to orientation workspace analysis of 6-DOF parallel manipulators,” Mechanism and Machine Theory, vol. 36, no. 1, pp. 15–28, 2001. View at Publisher · View at Google Scholar
  25. R. L. Hollis, S. E. Salcudean, and A. P. Allan, “A six-degree-of-freedom magnetically levitated variable compliance fine-motion wrist: design, modeling, and control,” IEEE Transactions on Robotics and Automation, vol. 7, no. 3, pp. 320–332, 1991. View at Publisher · View at Google Scholar
  26. L. E. Bruzzone and R. M. Molfino, “A geometric definition of rotational stiffness and damping applied to impedance control of parallel robots,” International Journal of Robotics and Automation, vol. 21, no. 3, pp. 197–205, 2006.
  27. M. Callegari, P. Marzetti, and B. Olivieri, “Kinematics of a parallel mechanism for the generation of spherical motions,” in On Advances in Robot Kinematics, J. Lenarcic and C. Galletti, Eds., pp. 449–458, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2004.
  28. T. Valency and M. Zacksenhouse, “Accuracy/robustness dilemma in impedance control,” Journal of Dynamic Systems, Measurement and Control, vol. 125, no. 3, pp. 310–319, 2003. View at Publisher · View at Google Scholar
  29. F. Caccavale, B. Siciliano, and L. Villani, “Robot impedance control with nondiagonal stiffness,” IEEE Transactions on Automatic Control, vol. 44, no. 10, pp. 1943–1946, 1999. View at Publisher · View at Google Scholar · View at MathSciNet
  30. M. Callegari and P. Marzetti, “Inverse dynamics model of a parallel orienting device,” in Proceedings of the 8th International IFAC Symposium on Robot Control (SYROCO '06), Bologna, Italy, September 2006.
  31. M. Callegari, “Design and prototyping of a SPM based on 3-CPU kinematics,” in Parallel Manipulators, New Developments, A. Lazinica, Ed., pp. 171–198, ARS, Vienna, Austria, April 2008.