About this Journal Submit a Manuscript Table of Contents
Advances in Mechanical Engineering
Volume 2010 (2010), Article ID 795478, 9 pages
http://dx.doi.org/10.1155/2010/795478
Review Article

Heat Transfer Mechanisms and Clustering in Nanofluids

Department of Mechanical and Aerospace Engineering, University of Miami, Coral Gables, FL 33124, USA

Received 18 May 2009; Accepted 24 November 2009

Academic Editor: Yogesh Jaluria

Copyright © 2010 Kaufui V. Wong and Michael J. Castillo. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. K. Das, S. U. S. Choi, W. Yu, and T. Pradeep, Nanofluids: Science and Technology, John Wiley & Sons, Hoboken, NJ, USA, 2008.
  2. W. Yu, D. M. France, J. L. Routbort, and S. U. S. Choi, “Review and comparison of nanofluid thermal conductivity and heat transfer enhancements,” Heat Transfer Engineering, vol. 29, no. 5, pp. 432–460, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. D. J. Jeffrey, “Conduction through a random suspension of spheres,” Proceedings of the Royal Society of London. Series A, vol. 335, pp. 355–367, 1973.
  4. J. Koo and C. Kleinstreuer, “A new thermal conductivity model for nanofluids,” Journal of Nanoparticle Research, vol. 6, no. 6, pp. 577–588, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. B.-X. Wang, L.-P. Zhou, and X.-F. Peng, “A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles,” International Journal of Heat and Mass Transfer, vol. 46, no. 14, pp. 2665–2672, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Xuan and Q. Li, “Heat transfer enhancement of nanofluids,” International Journal of Heat and Fluid Flow, vol. 21, no. 1, pp. 58–64, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. T.-K. Hong, H.-S. Yang, and C. J. Choi, “Study of the enhanced thermal conductivity of Fe nanofluids,” Journal of Applied Physics, vol. 97, no. 6, Article ID 064311, 4 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. S. A. Putnam, D. G. Cahill, P. V. Braun, Z. Ge, and R. G. Shimmin, “Thermal conductivity of nanoparticle suspensions,” Journal of Applied Physics, vol. 99, no. 8, Article ID 084308, 6 pages, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. S. M. S. Murshed, K. C. Leong, and C. Yang, “Enhanced thermal conductivity of TiO2—water based nanofluids,” International Journal of Thermal Sciences, vol. 44, no. 4, pp. 367–373, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. S. M. S. Murshed, K. C. Leong, and C. Yang, “A combined model for the effective thermal conductivity of nanofluids,” Applied Thermal Engineering, vol. 29, no. 11-12, pp. 2477–2483, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Sandhu, “Magnetic nanofluids: chain reaction,” Nature Nanotechnology. In press. View at Publisher · View at Google Scholar
  12. J. Philip, P. D. Shima, and B. Raj, “Nanofluid with tunable thermal properties,” Applied Physics Letters, vol. 92, no. 4, Article ID 043108, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. J. C. Maxwell, Treatise on Electricity and Magnetism, Clarendon Press, Oxford, UK, 1873.
  14. V. Trisaksri and S. Wongwises, “Critical review of heat transfer characteristics of nanofluids,” National Research Council of Thailand (NRCT), 2006, http://www.energy-based.nrct.go.th/Article/Ts-3%20critical%20review%20of%20heat%20transfer%20characteristics%20of%20nanofluids.pdf.
  15. C. G. Granqvist and R. A. Burhman, “Ultrafine metal particles,” Journal of Applied Physics, vol. 47, no. 5, pp. 2200–2219, 1976. View at Publisher · View at Google Scholar
  16. K. S. Suslick, M. Fang, and T. Hyeon, “Sonochemical synthesis of iron colloids,” Journal of the American Chemical Society, vol. 118, no. 47, pp. 11960–11961, 1996. View at Publisher · View at Google Scholar
  17. J. M. Romano, J. C. Parker, and Q. B. Ford, “Application opportunities for nanoparticles made from the condensation of physical vapors,” in Proceedings of the International Conference on Powder Metallurgy and Particulate Materials, vol. 2, pp. 12–13, Chicago, Ill, USA, June 1997.
  18. M. Kostic, “Nanofluids: Advanced Flow and Heat Transfer Fluids,” Northern Illinois University, 2004, http://www.kostic.niu.edu/DRnanofluids.
  19. Y. Xuan and Q. Li, “Heat transfer enhancement of nanofluids,” International Journal of Heat and Fluid Flow, vol. 21, no. 1, pp. 58–64, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. “Thermal Conductivity of Liquids and Gases,” National Institute of Standards and Technology (NIST), http://fluidproperties.nist.gov/thermal.html.
  21. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, Oxford University Press, New York, NY, USA, 1967.
  22. S. Lee, S. U.-S. Choi, S. Li, and J. A. Eastman, “Measuring thermal conductivity of fluids containing oxide nanoparticles,” Journal of Heat Transfer, vol. 121, no. 2, pp. 280–289, 1999. View at Scopus
  23. H. Xie, J. Wang, T. Xi, Y. Liu, F. Ai, and Q. Wu, “Thermal conductivity enhancement of suspensions containing nanosized alumina particles,” Journal of Applied Physics, vol. 91, no. 7, pp. 4568–4572, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. S. K. Das, N. Putra, P. Thiesen, and W. Roetzel, “Temperature dependence of thermal conductivity enhancement for nanofluids,” Journal of Heat Transfer, vol. 125, no. 4, pp. 567–574, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. R. L. Hamilton and O. K. Crosser, “Thermal conductivity of heterogeneous two-component systems,” Industrial and Engineering Chemistry Fundamentals, vol. 1, no. 3, pp. 187–191, 1962. View at Scopus
  26. S. P. Jang and S. U. S. Choi, “Role of Brownian motion in the enhanced thermal conductivity of nanofluids,” Applied Physics Letters, vol. 84, no. 21, pp. 4316–4318, 2004. View at Publisher · View at Google Scholar
  27. P. Keblinski, S. R. Phillpot, S. U. S. Choi, and J. A. Eastman, “Mechanics of heat flow in suspensions of nano-sized particles (nanofluids),” International Journal of Heat and Mass Transfer, vol. 307, pp. 313–317, 2003.
  28. K. Hoon and Y. K. Lee, “Brownian motion of a microscopic particle,” http://www.hasdeu.bz.edu.ro/softuri/fizica/mariana/Termodinamica/Brownian_1/files/report.br1.
  29. D. H. Kumar, H. E. Patel, V. R. R. Kumar, T. Sundararajan, T. Pradeep, and S. K. Das, “Model for heat conduction in nanofluids,” Physical Review Letters, vol. 93, no. 14, Article ID 144301, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. A. S. Cherkasova and J. W. Shan, “Particle aspect-ratio effects on the thermal conductivity of micro- and nanoparticle suspensions,” Journal of Heat Transfer, vol. 130, no. 8, Article ID 082406, 7 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. C.-W. Nan, R. Birringer, D. R. Clarke, and H. Gleiter, “Effective thermal conductivity of particulate composites with interfacial thermal resistance,” Journal of Applied Physics, vol. 81, no. 10, pp. 6692–6699, 1997. View at Scopus
  32. S. Ju and Z. Y. Li, “Theory of thermal conductance in carbon nanotube composites,” Physics Letters A, vol. 353, no. 2-3, pp. 194–197, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. Q. Z. Xue, “Model for the effective thermal conductivity of carbon nanotube composites,” Nanotechnology, vol. 17, no. 6, pp. 1655–1660, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. W. Yu and S. U. S. Choi, “The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model,” Journal of Nanoparticle Research, vol. 5, no. 1-2, pp. 167–171, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. W. Yu and S. U. S. Choi, “The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Hamilton-Crosser model,” Journal of Nanoparticle Research, vol. 6, no. 4, pp. 355–361, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. C. H. Chon, K. D. Kihm, S. P. Lee, and S. U. S. Choi, “Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement,” Applied Physics Letters, vol. 87, no. 15, Article ID 153107, 3 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. M.-S. Liu, M. C. C. Lin, I.-T. Huang, and C.-C. Wang, “Enhancement of thermal conductivity with carbon nanotube for nanofluids,” International Communications in Heat and Mass Transfer, vol. 32, no. 9, pp. 1202–1210, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. F. D. S. Marquis and L. P. F. Chibante, “Improving the heat transfer of nanofluids and nanolubricants with carbon nanotubes,” JOM, vol. 57, no. 12, pp. 32–43, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. L. Vekas and B. Doina, “Magnetic nanofluids, preparation, properties and some applications,” in Proceedings of the 1st Nanoforum Workshop, Sinaia, Romania, October 2003.
  40. D. Wen and Y. Ding, “Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions,” International Journal of Heat and Mass Transfer, vol. 47, no. 24, pp. 5181–5188, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Z. Heris, S. Gh. Etemad, and M. N. Esfahany, “Experimental investigation of oxide nanofluids laminar flow convective heat transfer,” International Communications in Heat and Mass Transfer, vol. 33, no. 4, pp. 529–535, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. Y. Ding, H. Alias, D. Wen, and R. A. Williams, “Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids),” International Journal of Heat and Mass Transfer, vol. 49, no. 1-2, pp. 240–250, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. D. J. Faulkner, D. R. Rector, J. J. Davidson, and R. Shekarriz, “Enhanced heat transfer through the use of nanofluids in forced convection,” in Proceedings of the ASME International Mechanical Engineering Congress and Exposition (IMECE '04), pp. 219–224, Anaheim, Calif, USA, November 2004. View at Scopus
  44. Y. Yang, Z. G. Zhang, E. A. Grulke, W. B. Anderson, and G. Wu, “Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow,” International Journal of Heat and Mass Transfer, vol. 48, no. 6, pp. 1107–1116, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. B. C. Pak and Y. I. Cho, “Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles,” Experimental Heat Transfer, vol. 11, no. 2, pp. 151–170, 1998. View at Scopus
  46. Y. Xuan and Q. Li, “Investigation on convective heat transfer and flow features of nanofluids,” Journal of Heat Transfer, vol. 125, no. 1, pp. 151–155, 2003. View at Publisher · View at Google Scholar · View at Scopus
  47. D. Kim, Y. Kwon, Y. Cho, et al., “Convective heat transfer characteristics of nanofluids under laminar and turbulent flow conditions,” Current Applied Physics, vol. 9, no. 2, supplement 1, pp. e119–e123, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. J. Buongiorno, “Convective transport in nanofluids,” Journal of Heat Transfer, vol. 128, no. 3, pp. 240–250, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. N. Putra, W. Roetzel, and S. K. Das, “Natural convection of nano-fluids,” Heat and Mass Transfer, vol. 39, no. 8-9, pp. 775–784, 2003. View at Publisher · View at Google Scholar · View at Scopus
  50. K. Khanafer, K. Vafai, and M. Lightstone, “Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids,” International Journal of Heat and Mass Transfer, vol. 46, no. 19, pp. 3639–3653, 2003. View at Publisher · View at Google Scholar · View at Scopus
  51. J. Kim, Y. T. Kang, and C.-K. Choi, “Analysis of convective instability and heat transfer characteristics of nanofluids,” Physics of Fluids, vol. 16, no. 7, pp. 2395–2401, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. J. A. Eastman, S. U. S. Choi, S. Li, W. Yu, and L. J. Thompson, “Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles,” Applied Physics Letters, vol. 78, no. 6, pp. 718–720, 2001. View at Publisher · View at Google Scholar · View at Scopus
  53. H. Chang, T. T. Tsung, Y. C. Yang, et al., “Nanoparticle suspension preparation using the arc spray nanoparticle synthesis system combined with ultrasonic vibration and rotating electrode,” International Journal of Advanced Manufacturing Technology, vol. 26, no. 5-6, pp. 552–558, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. C.-H. Lo, T.-T. Tsung, L.-C. Chen, C.-H. Su, and H.-M. Lin, “Fabrication of copper oxide nanofluid using submerged arc nanoparticle synthesis system (SANSS),” Journal of Nanoparticle Research, vol. 7, no. 2-3, pp. 313–320, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. C.-H. Lo, T.-T. Tsung, and L.-C. Chen, “Shape-controlled synthesis of Cu-based nanofluid using submerged arc nanoparticle synthesis system (SANSS),” Journal of Crystal Growth, vol. 277, no. 1–4, pp. 636–642, 2005. View at Publisher · View at Google Scholar · View at Scopus
  56. Q. Cao and J. Tavares, “Dual-Plasma Synthesis of Coated Nanoparticles and Nanofluids,” November 2006, http://aiche.confex.com/aiche/2006/techprogram/P65561.HTM.
  57. S. M. S. Murshed, K. C. Leong, and C. Yang, “Thermophysical and electrokinetic properties of nanofluids—a critical review,” Applied Thermal Engineering, vol. 28, no. 17-18, pp. 2109–2125, 2008. View at Publisher · View at Google Scholar · View at Scopus
  58. R. Prasher, P. Bhattacharya, and P. E. Phelan, “Brownian-motion-based convective-conductive model for the effective thermal conductivity of nanofluids,” Journal of Heat Transfer, vol. 128, no. 6, pp. 588–595, 2006. View at Publisher · View at Google Scholar · View at Scopus