About this Journal Submit a Manuscript Table of Contents
Advances in Mechanical Engineering
Volume 2011 (2011), Article ID 345328, 5 pages
http://dx.doi.org/10.1155/2011/345328
Research Article

On Relationships among the Aggregation Number, Rheological Property, and Turbulent Drag-Reducing Effect of Surfactant Solutions

1School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
2State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
3Beijing Key Laboratory of Urban Oil and Gas Distribution Technology, China University of Petroleum-Beijing, Beijing 102249, China

Received 31 May 2011; Accepted 29 June 2011

Academic Editor: Yasuo Kawaguchi

Copyright © 2011 Ying-Bo Zhou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this study, turbulent drag-reducing effect, rheological characteristics and micelle aggregation number of aqueous solutions of anionic surfactant, sodium dodecyl sulfate (SDS), and cationic surfactant cetyltrimethylammonium chloride (CTAC) aided with sodium salicylate (NaSal). SDS solution was experimentally investigated at various concentrations in CMCs (critical micelle concentration) with and without sodium chloride. 200 ppm (ppm means part per million) CTAC/NaSal (mass ratio 1 : 1) solution was tested within temperature range from 20C to 80C. We were aiming at gaining insights into relationships among turbulent drag reduction rate, rheological properties and micelle microstructures of drag-reducing surfactant solution. Experiments on aggregation number, turbulent drag reduction and shear-rate dependent shear viscosity were performed for solution of SDS and 200 ppm CTAC/NaSal, respectively. The relationships among these three parameters were analyzed and discussed. The results are of importance from both theoretical and practical viewpoints for micellar transitions of surfactant solution.