About this Journal Submit a Manuscript Table of Contents
Advances in Mechanical Engineering
Volume 2012 (2012), Article ID 183853, 12 pages
http://dx.doi.org/10.1155/2012/183853
Research Article

Experimental Study of the Cooling of Electrical Components Using Water Film Evaporation

1Université Lille Nord de France, 59000 Lille, France
2UVHC, TEMPO, 59313 Valenciennes, France
3Alstom Transport, Valenciennes, France
4Alstom Transport, Charleroi, Belgium

Received 18 July 2012; Revised 24 September 2012; Accepted 2 October 2012

Academic Editor: Kim Choon Ng

Copyright © 2012 S. Harmand et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Sonan, S. Harmand, J. Pellé, D. Leger, and M. Fakès, “Transient thermal and hydrodynamic model of flat heat pipe for the cooling of electronics components,” International Journal of Heat and Mass Transfer, vol. 51, no. 25-26, pp. 6006–6017, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Harmand, R. Sonan, M. Faks, and H. Hassan, “Transient cooling of electronic components by flat heat pipes,” Applied Thermal Engineering, vol. 31, no. 11-12, pp. 1877–1885, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. K. R. Chun and R. A. Seban, “Heat transfer to evaporating liquid films,” Journal of Heat Transfer, Transactions ASME, vol. 93, no. 4, pp. 391–396, 1971. View at Scopus
  4. R. A. Seban and A. Faghri, “Evaporation and heating with turbulent falling liquid films,” Journal of Heat Transfer, vol. 98, no. 2, pp. 315–318, 1976.
  5. A. S. Cherif, M. A. Kassim, B. Benhamou, S. Harmand, J. P. Corriou, and S. Ben Jabrallah, “Experimental and numerical study of mixed convection heat and mass transfer in a vertical channel with film evaporation,” International Journal of Thermal Sciences, vol. 50, no. 6, pp. 942–953, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Fahem, S. Ben Jabrallah, A. Belghith, and J. P. Corriou, “Numerical simulation of the behaviour of a distillation cell with influence of the characteristics of the heating wall,” Desalination, vol. 201, no. 1–3, pp. 185–197, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Orfi, M. Laplante, H. Marmouch et al., “Experimental and theoretical study of a humidification-dehumidification water desalination system using solar energy,” Desalination, vol. 168, no. 1–3, pp. 151–159, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. W. N. Gill, E. Del Casal, and D. W. Zeh, “Binary diffusion and heat transfer in laminar free convection boundary layers on a vertical plate,” International Journal of Heat and Mass Transfer, vol. 8, no. 8, pp. 1135–1151, 1965. View at Scopus
  9. T. S. Chen and C. F. Yuh, “Combined heat and mass transfer in natural convection on inclined surfaces,” Numerical Heat Transfer, vol. 2, no. 2, pp. 233–250, 1979.
  10. C. J. Chang, T. F. Lin, and W. M. Yan, “Natural convection flows in a vertical, open tube resulting from combined buoyancy effects of thermal and mass diffusion,” International Journal of Heat and Mass Transfer, vol. 29, no. 10, pp. 1543–1552, 1986. View at Scopus
  11. V. Chandra and C. William Savery, “Forced convective heat and mass transfer from a falling film to a laminar external boundary layer,” International Journal of Heat and Mass Transfer, vol. 17, no. 12, pp. 1549–1557, 1974. View at Scopus
  12. V. Chandra, Mass, momentum and heat transfer from a falling film to a countercurrent air stream [Ph.D. thesis], Drexel University, Philadelphia, Pa, USA, 1975.
  13. J. Schroeppel and F. Thiele, “On the calculation of momentum, heat and mass transfer in laminar and turbulent boundary layer flows along a a porizing liquid film,” Numerical Heat Transfer, vol. 6, no. 4, pp. 475–496, 1983. View at Scopus
  14. L. C. Chow and J. N. Chung, “Evaporation of water into a laminar stream of air and superheated steam,” International Journal of Heat and Mass Transfer, vol. 26, no. 3, pp. 373–380, 1983. View at Scopus
  15. L. C. Chow and J. N. Chung, “Water evaporation into a turbulent stream of air, humid air or superheated steam,” in Proceedings of the 21st ASME/AICHE National Heat Transfer Conference, ASME Paper 83-HT-2, Seattle, Wash, USA, 1983.
  16. M. Haji and L. C. Chow, “Experimental measurement of water evaporation rates into air and superheated steam,” Journal of Heat Transfer, vol. 110, no. 1, pp. 237–242, 1988. View at Scopus
  17. T. R. Shembharkar and B. R. Pai, “Prediction of film cooling with a liquid coolant,” International Journal of Heat and Mass Transfer, vol. 29, no. 6, pp. 899–908, 1986. View at Scopus
  18. W. W. Baumann and F. Thiele, “Heat and mass transfer in two-component film evaporation in a vertical tube,” in Proceedings of the 8th International Conference on Heat Transfer, vol. 4, pp. 1843–1848, 1986.
  19. J. V. Beck, B. Blackwell, and C. R. St Clair, Inverse Heat Conduction—Ill-Posed Problems, John Wiley Interscience, New York, NY, USA, 1985.
  20. A. N. Tikhonov and V. Y. Arsenin, Solution of Ill-Posed Problems, V. H. Winston & Sons, Washington, DC, USA, 1977.
  21. W. M. Yan and C. Y. Soong, “Convective heat and mass transfer along an inclined heated plate with film evaporation,” International Journal of Heat and Mass Transfer, vol. 38, no. 7, pp. 1261–1269, 1995. View at Scopus