About this Journal Submit a Manuscript Table of Contents
Advances in Mechanical Engineering
Volume 2012 (2012), Article ID 427386, 11 pages
http://dx.doi.org/10.1155/2012/427386
Research Article

Mechanical Properties of Ti-6Al-4V Octahedral Porous Material Unit Formed by Selective Laser Melting

School of Mechanical and Automobile Engineering, South China University of Technology, Guangzhou 510640, China

Received 2 June 2012; Revised 28 August 2012; Accepted 28 August 2012

Academic Editor: Yung C. Shin

Copyright © 2012 Jianfeng Sun et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The Ti-6Al-4V octahedral porous material unit is designed to calculate its load. In this paper, ANSYS is adopted for the load simulation of the unit. And a simplified model of dimensional theoretical calculation is established, by which the analytical equation of the fracture load is obtained and the calculation of the load of Ti-6Al-4V is completed. Moreover, selective laser melting is adopted in processing the Ti-6Al-4V porous material unit. The experimental value of fracture load of this material is obtained through compression experiment. The results show that the simulation curves approximate the variation tendency of the elastic deformation of the compression curves; the curves of theoretical calculation approximate the general variation tendency; and the experimental value of fracture load is very close to the theoretical value. Therefore, the theoretical prediction accuracy of fracture load is high, which lays the foundation for the mechanical properties of the octahedral porous material.