About this Journal Submit a Manuscript Table of Contents
Advances in Mechanical Engineering
Volume 2012 (2012), Article ID 587165, 12 pages
http://dx.doi.org/10.1155/2012/587165
Research Article

Modeling and Computation of Heat Transfer through Permeable Hollow-Pin Systems

Department of Mechanical Engineering, King Abdulaziz University, P.O. Box 80204, Jeddah 21589, Saudi Arabia

Received 6 June 2012; Accepted 8 August 2012

Academic Editor: C. T. Nguyen

Copyright © 2012 A.-R. A. Khaled. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Heat transfer inside permeable hollow-fin systems is analyzed in this work. Two types are considered: (A) the permeable hollow-pin, and (B) the permeable hollow joint-pin. The governing partial differential equations are solved numerically using a well-known implicit, iterative and finite-difference method. The numerical solutions are validated against various analytical solutions derived based on different constraints. It is found that the permeable hollow-pin can transfer more thermal energy than the solid pin when an external suction flow is present at the outer surfaces. Moreover, the maximum reported heat transfer rate due to permeable hollow-pin is 362 percent above that of solid pin at dimensionless suction flow number equals to 3.0. Furthermore, the maximum reported heat transfer rate due to permeable hollow joint-pin is 44 percent above that of the solid joint-pin at dimensionless suction flow number equals to 2.0. In addition, the permeable hollow joint-pin is found to be capable of transferring more thermal energy than the solid joint-pin at a specific joint-pin lengths ratio depending on the values of the various controlling parameters. Finally, this work demonstrates that by using combined heat transfer enhancement approaches, novel heat transfer enhancers can be proposed.