About this Journal Submit a Manuscript Table of Contents
Advances in Mechanical Engineering
Volume 2012 (2012), Article ID 649215, 10 pages
http://dx.doi.org/10.1155/2012/649215
Research Article

Fatigue Reliability Assessment of Steel Member Using Probabilistic Stress-Life Method

1Machinery, Metal and Construction Examination Bureau, Korean Intellectual Property Office, Daejeon 302-701, Republic of Korea
2Department of Civil Engineering, Jeonnam National University, Gwangju 500-757, Republic of Korea
3School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749, Republic of Korea

Received 12 September 2012; Accepted 12 December 2012

Academic Editor: Shandong Tu

Copyright © 2012 Dae-Hung Kang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The fatigue reliability of a steel member in a bridge is estimated by using the probabilistic stress-life method. The stress history of a member is defined as the loading block when a truck passes over a bridge, and the stress range frequency distribution of the stress history is obtained by a stress range frequency analysis. A probabilistic method is applied to the stress range frequency distribution, and the parameters of the probability distribution for the stress range frequency distribution are used in a numerical simulation. To obtain the probability of failure of a member under a loading block, Monte Carlo simulation is performed in conjunction with Miner’s rule, the modified Miner’s rule, and Haibach’s rule for fatigue damage evaluation. Through these analyses procedures, we obtain an evaluation method for fatigue reliability that can predict the block number of the failure load and residual fatigue life.