About this Journal Submit a Manuscript Table of Contents
Advances in Mechanical Engineering
Volume 2013 (2013), Article ID 183079, 13 pages
http://dx.doi.org/10.1155/2013/183079
Research Article

Magnetic Field Effect on Natural Convection in a Porous Cavity Heating from below and Salting from Side

1School of Mathematical Sciences, National University of Malaysia, 43600 Bangi, Selangor, Malaysia
2Department of Mechanical, Materials and Manufacturing Engineering, Faculty of Engineering, The University of Nottingham, 43500 Semenyih, Selangor, Malaysia

Received 10 July 2012; Accepted 17 December 2012

Academic Editor: Hyung Hee Cho

Copyright © 2013 A. A. Altawallbeh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The effect of magnetic field on double-diffusive natural convection in a square cavity filled with a fluid-saturated porous medium is studied numerically. The bottom wall is fully heated at a constant temperature, and the top wall is maintained at a constant cold temperature. The right wall is fully salted to a high concentration, while the left wall is fully salted at a lower concentration than the right one. A magnetic force is applied on the cavity along the gravity force direction. The Darcy model is used for the mathematical formulation of the fluid flow through porous media. The governing equations for heat and mass transfer are solved using the finite volume method. The governing parameters of the present study are Rayleigh number (Ra), Lewis number (Le), buoyancy ratio ( ), and Hartmann number (Ha). The numerical solutions were studied in the range of − , , , and . The results were discussed considering the effect of these parameters on the heat and mass transfer processes. The results were presented in terms of streamlines, isotherms, isoconcentration, average Nusselt number, and average Sherwood number for different values of the governing parameters. In general, it has been found that the increase of magnetic force has an effect to retard the strength of the flow inside the cavity and reduce the heat and mass transfer processes. For high Hartmann number, the flow is almost suppressed.