About this Journal Submit a Manuscript Table of Contents
Advances in Mechanical Engineering
Volume 2013 (2013), Article ID 236389, 12 pages
http://dx.doi.org/10.1155/2013/236389
Research Article

Study of Dynamic Flow and Mixing Performances of Tri-Screw Extruders with Finite Element Method

School of Mechanical Engineering, Liaoning Shihua University, Fushun, Liaoning 113001, China

Received 13 September 2012; Revised 10 December 2012; Accepted 9 January 2013

Academic Editor: Rehan Ahmed

Copyright © 2013 X. Z. Zhu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. Jiang and C. W. Zhu, “Analysis of mixing performance in a triple screw extruder,” China Plastics, vol. 15, pp. 87–91, 2001.
  2. H. F. Wang and C. G. Zhou, “The research and application of multi-screw extruders,” Engineering Plastics Application, vol. 39, pp. 85–88, 2011.
  3. R. K. Connelly and J. L. Kokini, “2-D numerical simulation of differential viscoelastic fluids in a single-screw continuous mixer: application of viscoelastic finite element methods,” Advances in Polymer Technology, vol. 22, no. 1, pp. 22–41, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. R. K. Connelly and J. L. Kokini, “Examination of the mixing ability of single and twin screw mixers using 2D finite element method simulation with particle tracking,” Journal of Food Engineering, vol. 79, no. 3, pp. 956–969, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Khalifeh and J. R. Clermont, “Numerical simulations of non-isothermal three-dimensional flows in an extruder by a finite-volume method,” Journal of Non-Newtonian Fluid Mechanics, vol. 126, no. 1, pp. 7–22, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Kurte-Jardin, H. Potente, K. Sigge, and M. Bornemann, “Modeling the temperature development of wall-slipping polymers in single-screw channels,” International Polymer Processing, vol. 24, no. 2, pp. 106–113, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Kopecz, M. Krebs, A. Meister, and O. Wünsch, “A fast numerical approach for the simulation of highly viscous non-isothermal non-Newtonian fluids,” Zeitschrift für Angewandte Mathematik und Physik, vol. 61, no. 4, pp. 673–684, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. S. C. Jana, G. Metcalfe, and J. M. Ottino, “Experimental and computational studies of mixing in complex stokes flows: the vortex mixing flow and multicellular cavity flows,” Journal of Fluid Mechanics, vol. 269, pp. 199–246, 1994. View at Scopus
  9. M. Sau and S. C. Jana, “A study on the effects of chaotic mixer design and operating conditions on morphology development in immiscible polymer systems,” Polymer Engineering and Science, vol. 44, no. 3, pp. 407–422, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Fan, R. I. Tanner, and N. Phan-Thien, “A numerical study of viscoelastic effects in chaotic mixing between eccentric cylinders,” Journal of Fluid Mechanics, vol. 412, pp. 197–225, 2000. View at Scopus
  11. T. H. Lee and T. H. Kwon, “A new representative measure of chaotic mixing in a chaos single-screw extruder,” Advances in Polymer Technology, vol. 18, no. 1, pp. 53–68, 1999. View at Scopus
  12. D. Hu and J. Chen, “Simulation of 3D isothermal flow in intermeshing co-rotating tri-screw extruders,” Journal of Beijing Institute of Technology, vol. 55, no. 2, pp. 280–283, 2004. View at Scopus
  13. D. D. Hu and J. N. Chen, “Simulation of polymer melt flow fields in intermeshing co-rotating three-screw extruders,” Journal of Beijing Institute of Technology, vol. 15, no. 3, pp. 360–365, 2006. View at Scopus
  14. X. Z. Zhu, Y. J. Xie, and H. Q. Yuan, “Numerical simulation of extrusion characteristics for co-rotating tri-screw extruder,” Polymer-Plastics Technology and Engineering, vol. 46, no. 4, pp. 401–407, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. X. Z. Zhu, Y. J. Xie, and Y. Miao, “Numerical study on temperature and power consumption of intermeshing co-rotation triangle arrayed tri-screw extruders,” Polymer-Plastics Technology and Engineering, vol. 48, no. 4, pp. 367–373, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. N. Jiang and C. Zhu, “Study on extrusion characteristics of the tri-screw extruder,” Polymer-Plastics Technology and Engineering, vol. 47, no. 6, pp. 590–594, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. Ansys, Polyflow. User’s manual, Version 3.12.0. Ansys: place del’Universite 16, B-1348 Louvain-la-Neuve: Belgium, 2007.
  18. B. Alsteens, T. Avalosse, V. Legat, T. Marchal, and E. Slachmuylders, “Effect of the full-slip condition along rotors on the mixing efficiency of internal mixers,” in Proceedings of the 61st Annual Technical Conference (ANTEC '03), pp. 173–177, May 2003. View at Scopus
  19. N. B. Tufillaro, T. Abbott, and J. Reilly, An Experimental Approach to Nonlinear Dynamics and Chaos, Addison-Wesley, Redwood City, Calif, USA, 1992.
  20. I. Manas-Zloczower, “Studies of mixing efficiency in batch and continuous mixers,” Rubber Chemistry and Technology, vol. 67, no. 3, pp. 504–528, 1994. View at Scopus