About this Journal Submit a Manuscript Table of Contents
Advances in Mechanical Engineering
Volume 2013 (2013), Article ID 310362, 12 pages
http://dx.doi.org/10.1155/2013/310362
Research Article

Reduced-Order Computational Model for Low-Frequency Dynamics of Automobiles

1Laboratoire Modélisation et Simulation Multi-Echelle, Université Paris-Est, MSME UMR 8208 CNRS, 5 Boulevard Descartes, 77454 Marne-la-Valle, France
2PSA Peugeot Citroën, Direction Technique et Industrielle, Centre Technique de Vélizy A, Route de Gisy, 78140 Vélizy Villacoublay, France

Received 23 February 2013; Accepted 5 July 2013

Academic Editor: Indra Vir Singh

Copyright © 2013 A. Arnoux et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

A reduced-order model is constructed to predict, for the low-frequency range, the dynamical responses in the stiff parts of an automobile constituted of stiff and flexible parts. The vehicle has then many elastic modes in this range due to the presence of many flexible parts and equipment. A nonusual reduced-order model is introduced. The family of the elastic modes is not used and is replaced by an adapted vector basis of the admissible space of global displacements. Such a construction requires a decomposition of the domain of the structure in subdomains in order to control the spatial wave length of the global displacements. The fast marching method is used to carry out the subdomain decomposition. A probabilistic model of uncertainties is introduced. The parameters controlling the level of uncertainties are estimated solving a statistical inverse problem. The methodology is validated with a large computational model of an automobile.