About this Journal Submit a Manuscript Table of Contents
Advances in Mechanical Engineering
Volume 2013 (2013), Article ID 496274, 7 pages
http://dx.doi.org/10.1155/2013/496274
Research Article

Developing Simple Production of Continuous Ramie Single Yarn Reinforced Composite Strands

1Graduate School of Science and Engineering, Yamaguchi University, Yamaguchi, Ube 755-8611, Japan
2Department of Mechanical Engineering, Yamaguchi University, Yamaguchi, Ube 755-8611, Japan
3Product Management Division, Kayaku Akzo Co., Ltd., Yamaguchi, Sanyo-Onoda 755-0002, Japan

Received 2 June 2012; Revised 28 December 2012; Accepted 20 January 2013

Academic Editor: Amar Mohanty

Copyright © 2013 Hyun-Bum Kim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Official homepage of The Ministry of Agriculture, Forestry and Fisheries, Japan, http://www.maff.go.jp/j/biomass/b_kihonho/pdf/keikaku.pdf.
  2. A. K. Bledzki and J. Gassan, “Composites reinforced with cellulose based fibres,” Progress in Polymer Science, vol. 24, no. 2, pp. 221–274, 1999. View at Publisher · View at Google Scholar · View at Scopus
  3. K. Goda and Y. Cao, “Research and development of fully green composites reinforced with natural fibers,” Journal of Solid Mechanics and Materials Engineering, vol. 1, no. 9, pp. 1073–1084, 2007.
  4. S. Kalia, B. S. Kaith, and I. Kaur, “Pretreatments of natural fibers and their application as reinforcing material in polymer composites-a review,” Polymer Engineering and Science, vol. 49, no. 7, pp. 1253–1272, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Ku, H. Wang, N. Pattarachaiyakoop, and M. Trada, “A review on the tensile properties of natural fiber reinforced polymer composites,” Composites B, vol. 42, pp. 856–873, 2011.
  6. M. U. de la Orden, C. G. Sánchez, M. G. Quesada, and J. M. Urreaga, “Effect of different coupling agents on the browning of cellulose-polypropylene composites during melt processing,” Polymer Degradation and Stability, vol. 95, pp. 201–206, 2010.
  7. A. Awal, G. Cescutti, S. B. Ghosh, and J. Müssig, “Interfacial studies of natural fibre/polypropylene composites using single fibre fragmentation test (SFFT),” Composites A, vol. 42, no. 1, pp. 50–56, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Arbelaiz, B. Fernández, G. Cantero, R. Llano-Ponte, A. Valea, and I. Mondragon, “Mechanical properties of flax fibre/polypropylene composites. Influence of fibre/matrix modification and glass fibre hybridization,” Composites A, vol. 36, no. 12, pp. 1637–1644, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Dores, A. Taguet, L. Ferry, and J. M. Lopez-Cuesta, “Thermal and fire behavior of natural fibers/PBS biocomposites,” Polymer Degradation and Stability Xxx, pp. 1–9, 2012.
  10. F. Yao, Q. Wu, Y. Lei, W. Guo, and Y. Xu, “Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis,” Polymer Degradation and Stability, vol. 93, no. 1, pp. 90–98, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. L. B. Manfredi, E. S. Rodríguez, M. Wladyka-Przybylak, and A. Vázquez, “Thermal degradation and fire resistance of unsaturated polyester, modified acrylic resins and their composites with natural fibres,” Polymer Degradation and Stability, vol. 91, no. 2, pp. 255–261, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. H. L. Bos, M. J. A. Van Den Oever, and O. C. J. J. Peters, “Tensile and compressive properties of flax fibres for natural fibre reinforced composites,” Journal of Materials Science, vol. 37, no. 8, pp. 1683–1692, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. P. R. Hornsby, E. Hinrichsen, and K. Tarverdi, “Preparation and properties of polypropylene composites reinforced with wheat and flax straw fibres: part II Analysis of composite microstructure and mechanical properties,” Journal of Materials Science, vol. 32, no. 4, pp. 1009–1015, 1997. View at Scopus
  14. S. K. Batra, M. Lewin, and E. M. . Pearce, “MEds and Marcel Deker,” in Handbook of Fiber Science and Technology, vol. 1, pp. 727–803, 1985.
  15. S. Nam and A. N. Netravali, “Green composites. II. Environment-friendly, biodegradable composites using ramie fibers and soy protein concentrate (SPC) resin,” Fibers and Polymers, vol. 7, no. 4, pp. 380–388, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. H. L. Bos, J. Müssig, and M. J. A. van den Oever, “Mechanical properties of short-flax-fibre reinforced compounds,” Composites A, vol. 37, no. 10, pp. 1591–1604, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. F. N. Cogswell, D. J. Hezzell, and P. J. Williams, “Fibre reinforced compositions and methods for producing such compositions,” US Patent No. 4559262, 1985.
  18. A. G. Gibson and J. A. Månson, “Impregnation technology for thermoplastic matrix composites,” Composites Manufacturing, vol. 3, no. 4, pp. 223–233, 1992. View at Scopus
  19. J. L. Thomason, “Dependence of interfacial strength on the anisotropic fiber properties of jute reinforced composites,” Polymer Composites, vol. 31, no. 9, pp. 1525–1534, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. A. K. Bledzki, A. Jaszkiewicz, and D. Scherzer, “Mechanical properties of PLA composites with man-made cellulose and abaca fibres,” Composites A, vol. 40, no. 4, pp. 404–412, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Tanaka and Y. Hirano, “Long fiber pellet production plants and their application to natural fiber composites (eco-composites),” Kobe Steel Engineering Reports, vol. 51, no. 2, pp. 62–66, 2001. View at Scopus
  22. K. Goda, M. S. Sreekala, A. Gomes, T. Kaji, and J. Ohgi, “Improvement of plant based natural fibers for toughening green composites-Effect of load application during mercerization of ramie fibers,” Composites A, vol. 37, no. 12, pp. 2213–2220, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. K. G. Satyanarayana, J. L. Guimarães, and F. Wypych, “Studies on lignocellulosic fibers of Brazil. Part I: source, production, morphology, properties and applications,” Composites A, vol. 38, no. 7, pp. 1694–1709, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. G. W. Beckermann and K. L. Pickering, “Engineering and evaluation of hemp fibre reinforced polypropylene composites: fibre treatment and matrix modification,” Composites A, vol. 39, no. 6, pp. 979–988, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. W. H. Bowyer and M. G. Bader, “On the re-inforcement of thermoplastics by imperfectly aligned discontinuous fibres,” Journal of Materials Science, vol. 7, no. 11, pp. 1315–1321, 1972. View at Publisher · View at Google Scholar · View at Scopus
  26. D. Hull, An Introduction to Composite Materials, Cambridge University Press, Cambridge, UK, 1st edition, 1981.
  27. L. G. Angelini, A. Lazzeri, G. Levita, D. Fontanelli, and C. Bozzi, “Ramie (Boehmeria nivea (L.) Gaud.) and Spanish Broom (Spartium junceum L.) fibres for composite materials: agronomical aspects, morphology and mechanical properties,” Industrial Crops and Products, vol. 11, no. 2-3, pp. 145–161, 2000. View at Publisher · View at Google Scholar · View at Scopus