About this Journal Submit a Manuscript Table of Contents
Advances in Mechanical Engineering
Volume 2013 (2013), Article ID 629385, 8 pages
http://dx.doi.org/10.1155/2013/629385
Research Article

Automatic Measurement in Large-Scale Space with the Laser Theodolite and Vision Guiding Technology

State Key Laboratory of Precision Measuring Technology & Instrument, Tianjin University, Tianjin 300072, China

Received 28 June 2013; Accepted 3 September 2013

Academic Editor: Fuqiang Zhou

Copyright © 2013 Bin Wu and Bing Wang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. Cuypers, N. van Gestel, A. Voet, J.-P. Kruth, J. Mingneau, and P. Bleys, “Optical measurement techniques for mobile and large-scale dimensional metrology,” Optics and Lasers in Engineering, vol. 47, no. 3-4, pp. 292–300, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. Z. G. Liu, Y. Z. Xu, Z. Z. Liu, and J. W. Wu, “A large scale 3D positioning method based on a network of rotating laser automatic theodolites,” in Proceedings of the IEEE International Conference on Information and Automation (ICIA '10), pp. 513–518, June 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. F. M. Zhang and X. H. Qu, “Large-scale shape measurement by a combined method based on three instruments,” Optical Engineering, vol. 51, no. 8, Article ID 083603, 9 pages, 2012.
  4. Z. Wang, L. Mastrogiacomo, F. Franceschini, and P. Maropoulos, “Experimental comparison of dynamic tracking performance of iGPS and laser tracker,” International Journal of Advanced Manufacturing Technology, vol. 56, no. 1–4, pp. 205–213, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Kayani and J. Jamshidi, “Measurement assisted assembly for large volume aircraft wing structures,” in Proceedings of the 4th International Conference on Digital Enterprise Technology, pp. 19–21, 2007.
  6. F. Q. Zhou, B. Peng, Y. Cui, Y. X. Wang, and H. S. Tan, “A novel laser vision sensor for omnidirectional 3D measurement,” Optics & Laser Technology, vol. 45, no. 1, pp. 1–12, 2012.
  7. N. Kochi, T. Ito, K. Kitamura, and S. Kaneko, “Development of 3D image measurement system and stereo-matching method, and its archeological measurement,” IEEJ Transactions on Electronics, Information and Systems, vol. 132, no. 3, pp. 391–400, 2012.
  8. T. Dodson, R. Ellis, C. Priniski, S. Raftopoulos, D. Stevens, and M. Viola, “Advantages of high tolerance measurements in fusion environments applying photogrammetry,” in Proceedings of the 23rd IEEE/NPSS Symposium on Fusion Engineering (SOFE '09), pp. 1–4, June 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Luhmann, “Close range photogrammetry for industrial applications,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 65, no. 6, pp. 558–569, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. J. E. Muelaner, Z. Wang, J. Jamshidi et al., “iGPS-An initial assessment of technical and deployment capability,” in Proceedings of the 3rd International Conference on Manufacturing Engineering, pp. 805–810, University of Bath, October 2008.
  11. W. Bösemann, “Advances in photogrammetric measurement solutions,” Computers in Industry, vol. 56, no. 8-9, pp. 886–893, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. F. Q. Zhou, Y. X. Wang, B. Peng, and Y. Cui, “A novel way of understanding for calibrating stereo vision sensor constructed by a single camera and mirrors,” Measurement, vol. 46, no. 3, pp. 1147–1160, 2012.
  13. W. Bösemann, “Online, offline, realtime—recent developments in industrial photogrammetry,” in Videometrics VII, Proceedings of SPIE, pp. 87–94, January 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Ganci and H. Handley, “Automation in videogrammetry,” International Archives of Photogrammetry and Remote Sensing, vol. 32, pp. 53–58, 1998.
  15. T. Xue, L. Q. Qu, Z. F. Cao, and T. Zhang, “Three-dimensional feature parameters measurement of bubbles in gas-liquid two-phase flow based on the virtual stereo vision,” Flow Measurement and Instrumentation, vol. 27, pp. 29–36, 2012.
  16. D. A. Maisano, J. Jamshidi, F. Franceschini et al., “Indoor GPS: system functionality and initial performance evaluation,” International Journal of Manufacturing Research, vol. 3, no. 3, pp. 335–349, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. Z. Y. Zhang, “A flexible new technique for camera calibration,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 11, pp. 1330–1334, 2000. View at Publisher · View at Google Scholar · View at Scopus