About this Journal Submit a Manuscript Table of Contents
Advances in Meteorology
Volume 2010 (2010), Article ID 230365, 10 pages
http://dx.doi.org/10.1155/2010/230365
Research Article

The Impact of the Urban Heat Island during an Intense Heat Wave in Oklahoma City

1Oklahoma Climatological Survey, University of Oklahoma, Norman, OK 73072, USA
2Center for Applied Social Research, University of Oklahoma, Norman, OK 73072, USA

Received 29 May 2009; Revised 1 October 2009; Accepted 10 January 2010

Academic Editor: Sue Grimmond

Copyright © 2010 Jeffrey B. Basara et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. A. Changnon, K. E. Kunkel, and B. C. Reinke, “Impacts and responses to the 1995 heat wave: a call to action,” Bulletin of the American Meteorological Society, vol. 77, no. 7, pp. 1497–1506, 1996. View at Scopus
  2. R. S. Kovats and S. Hajat, “Heat stress and public health: a critical review,” Annual Review of Public Health, vol. 29, pp. 41–55, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. J. C. Semenza, C. H. Rubin, K. H. Falter, et al., “Heat-related deaths during the July 1995 heat wave in Chicago,” New England Journal of Medicine, vol. 335, no. 2, pp. 84–90, 1996. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Vandentorren, F. Suzan, S. Medina, et al., “Mortality in 13 French cities during the August 2003 heat wave,” American Journal of Public Health, vol. 94, no. 9, pp. 1518–1520, 2004. View at Scopus
  5. T. Kosatsky, “The 2003 European heat waves,” Euro Surveillance, vol. 10, no. 7, pp. 148–149, 2005. View at Scopus
  6. L. Grize, A. Huss, O. Thommen, C. Schindler, and C. Braun-Fahrländer, “Heat wave 2003 and mortality in Switzerland,” Swiss Medical Weekly, vol. 135, no. 13-14, pp. 200–205, 2005. View at Scopus
  7. J. A. Patz, D. Campbell-Lendrum, T. Holloway, and J. A. Foley, “Impact of regional climate change on human health,” Nature, vol. 438, no. 7066, pp. 310–317, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. S. L. Harlan, A. J. Brazel, L. Prashad, W. L. Stefanov, and L. Larsen, “Neighborhood microclimates and vulnerability to heat stress,” Social Science and Medicine, vol. 63, no. 11, pp. 2847–2863, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. R. Basu, F. Dominici, and J. M. Samet, “Temperature and mortality among the elderly in the United States: a comparison of epidemiologic methods,” Epidemiology, vol. 16, no. 1, pp. 58–66, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Beniston, “The 2003 heat wave in Europe: a shape of things to come? An analysis based on Swiss climatological data and model simulations,” Geophysical Research Letters, vol. 31, no. 2, Article ID L02202, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. G. A. Meehl and C. Tebaldi, “More intense, more frequent, and longer lasting heat waves in the 21st century,” Science, vol. 305, no. 5686, pp. 994–997, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. S. Sheridan and L. Kalkstein, “Heat watch-warning systems in urban areas,” World Resource Review, vol. 10, pp. 375–383, 1998.
  13. K. L. Ebi, T. J. Teisberg, L. S. Kalkstein, L. Robinson, and R. F. Weiher, “Heat watch/warning systems save lives: estimated costs and benefits for Philadelphia 1995–98,” Bulletin of the American Meteorological Society, vol. 85, no. 8, pp. 1067–1073, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. S. C. Sheridan and L. S. Kalkstein, “Progress in heat watch-warning system technology,” Bulletin of the American Meteorological Society, vol. 85, no. 12, pp. 1931–1941, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. K. E. Kunkel, S. A. Changnon, B. C. Reinke, and R. W. Arritt, “The July 1995 heat wave in the midwest: a climatic perspective and critical weather factors,” Bulletin of the American Meteorological Society, vol. 77, no. 7, pp. 1507–1518, 1996. View at Scopus
  16. M. A. Palecki, S. A. Changnon, and K. E. Kunkel, “The nature and impacts of the July 1999 heat wave in the midwestern United States: learning from the lessons of 1995,” Bulletin of the American Meteorological Society, vol. 82, no. 7, pp. 1353–1367, 2001. View at Scopus
  17. H. Johnson, R. S. Kovats, G. McGregor, J. Stedman, M. Gibbs, and H. Walton, “The impact of the 2003 heat wave on daily mortality in England and Wales and the use of rapid weekly mortality estimates,” Euro Surveillance, vol. 10, no. 7, pp. 168–171, 2005. View at Scopus
  18. P. Michelozzi, F. de Donato, L. Bisanti, et al., “The impact of the summer 2003 heat waves on mortality in four Italian cities,” Euro Surveillance, vol. 10, no. 7, pp. 161–165, 2005. View at Scopus
  19. P. Pirard, S. Vandentorren, M. Pascal, et al., “Summary of the mortality impact assessment of the 2003 heat wave in France,” Euro Surveillance, vol. 10, no. 7, pp. 153–156, 2005. View at Scopus
  20. United Nations Human Settlements Program, “Human Settlements Basic Statistics,” 1997, http://www.unhabitat.org/unchs/english/stats/contents.htm.
  21. W. F. Dabberdt, J. Hales, S. Zubrick, et al., “Forecast issues in the urban zone: report of the 10th prospectus development team of the U.S. weather research program,” Bulletin of the American Meteorological Society, vol. 81, no. 9, pp. 2047–2064, 2000. View at Scopus
  22. United Nations, “World Urbanization Prospects—2003 Revision,” 2003, http://www.un.org/esa/population/publications/wup2003/2003wup.htm.
  23. S. A. Changnon, “Inadvertent weather modification in urban areas: lessons for global climate change,” Bulletin of the American Meteorological Society, vol. 73, no. 5, pp. 619–627, 1992. View at Scopus
  24. R. Bornstein, “Observations of the urban heat island effect in New York City,” Journal of Applied Meteorology, vol. 7, pp. 575–582, 1968.
  25. S. Grimmond, “Urbanization and global environmental change: local effects of urban warming,” Geographical Journal, vol. 173, no. 1, pp. 83–88, 2007. View at Scopus
  26. L. C. Nkemdirim, “A test of a lapse rate/wind speed model for estimating heat island magnitude in an urban airshed,” Journal of Applied Meteorology, vol. 19, no. 6, pp. 748–756, 1980. View at Scopus
  27. T. R. Oke, “The urban energy balance,” Progress in Physical Geography, vol. 12, no. 4, pp. 471–508, 1988. View at Scopus
  28. J. Lu and S. P. Arya, “A laboratory study of the urban heat island in a calm and stably stratified environment—part I: temperature field,” Journal of Applied Meteorology, vol. 36, pp. 1377–1391, 1997.
  29. T. R. Oke, R. A. Spronken-Smith, E. Jáuregui, and C. S. Grimmond, “The energy balance of central Mexico City during the dry season,” Atmospheric Environment, vol. 33, no. 24-25, pp. 3919–3930, 1999. View at Publisher · View at Google Scholar · View at Scopus
  30. T. W. Hawkins, A. J. Brazel, W. L. Stefanov, W. Bigler, and E. M. Saffell, “The role of rural variability in urban heat island determination for Phoenix, Arizona,” Journal of Applied Meteorology, vol. 43, no. 3, pp. 476–486, 2004. View at Scopus
  31. C. J. G. Morris, I. Simmonds, and N. Plummer, “Quantification of the influence of wind and cloud on the nocturnal urban heat island of a large city,” Journal of Applied Meteorology, vol. 40, no. 2, pp. 169–182, 2001. View at Scopus
  32. K. M. Hinkel, F. E. Nelson, A. E. Klene, and J. H. Bell, “The urban heat island in winter at Barrow, Alaska,” International Journal of Climatology, vol. 23, no. 15, pp. 1889–1905, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. L. S. Kalkstein and R. E. Davis, “Weather and human mortality: an evaluation of demographic and interregional responses in the United States,” Annals of the Association of American Geographers, vol. 79, no. 1, pp. 44–64, 1989. View at Scopus
  34. L. S. Kalkstein and J. S. Greene, “An evaluation of climate/mortality relationships in large U.S. cities and the possible impacts of a climate change,” Environmental Health Perspectives, vol. 105, no. 1, pp. 84–93, 1997. View at Scopus
  35. C. Campetella and M. Rusticucci, “Synoptic analysis of an extreme heat wave over Argentina in March 1980,” Meteorological Applications, vol. 5, no. 3, pp. 217–226, 1998. View at Scopus
  36. K. E. Smoyer-Tomic, R. Kuhn, and A. Hudson, “Heat wave hazards: an overview of heat wave impacts in Canada,” Natural Hazards, vol. 28, no. 2-3, pp. 463–485, 2003. View at Scopus
  37. R. Basu and J. M. Samet, “Relation between elevated ambient temperature and mortality: a review of the epidemiologic evidence,” Epidemiologic Reviews, vol. 24, no. 2, pp. 190–202, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. J. B. Basara, P. K. Hall Jr., A. J. Schroeder, B. G. Illston, and K. L. Nemunaitis, “Diurnal cycle of the Oklahoma City urban heat island,” Journal of Geophysical Research D, vol. 113, no. 20, Article ID D20109, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. R. A. McPherson, C. A. Fiebrich, K. C. Crawford, et al., “Statewide monitoring of the mesoscale environment: a technical update on the Oklahoma Mesonet,” Journal of Atmospheric and Oceanic Technology, vol. 24, no. 3, pp. 301–321, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. T. R. Oke, Initial Guidance to Obtain Representative Meteorological Observations at Urban Sites, WMO/TD, no. 1250, 2004.
  41. J. B. Basara, B. G. Illston, C. A. Fiebrich, et al., “The Oklahoma City Micronet,” Meteorological Applications. In press.
  42. B. Ackerman, “Temporal march of the Chicago heat island,” Journal of Climate & Applied Meteorology, vol. 24, no. 6, pp. 547–554, 1985.
  43. Y. Kim and J. Baik, “Spatial and temporal structure of the urban heat island in Seoul,” Journal of Applied Meteorology, vol. 44, pp. 591–605, 2005.
  44. A. J. Schroeder and J. B. Basara, “Challenges associated with classifying urban meteorological stations: the Oklahoma City Micronet example,” The Open Atmospheric Science Journal in review.
  45. R. E. Davis, P. C. Knappenberger, P. J. Michaels, and W. M. Novicoff, “Changing heat-related mortality in the United States,” Environmental Health Perspectives, vol. 111, pp. 1712–1718, 2003.
  46. S. Hajat, B. Armstrong, M. Baccini, et al., “Impact of high temperatures on mortality: is there an added heat wave effect?” Epidemiology, vol. 17, no. 6, pp. 632–638, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. H. Kan, S. J. London, H. Chen, et al., “Diurnal temperature range and daily mortality in Shanghai, China,” Environmental Research, vol. 103, no. 3, pp. 424–431, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. S. N. Gosling, J. A. Lowe, G. R. McGregor, M. Pelling, and B. D. Malamud, “Associations between elevated atmospheric temperature and human mortality: a critical review of the literature,” Climatic Change, vol. 92, no. 3-4, pp. 299–341, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. R. G. Steadman, “The assessment of sultriness—part I: a temperature-humidity index based on human physiology and clothing science,” Journal of Applied Meteorology, vol. 18, no. 7, pp. 861–873, 1979. View at Scopus
  50. L. Rothfusz, “The heat index “equation” (or, more than you ever wanted to know about heat index),” Technical Attachment SR 90-23, NWS, 1990.
  51. L. S. Kalkstein and K. M. Valimont, “An evaluation of summer discomfort in the United States using a relative climatological index,” Bulletin, vol. 67, no. 7, pp. 842–848, 1986.
  52. P. Michelozzi, U. Kirchmayer, K. Katsouyanni, et al., “Assessment and prevention of acute health effects of weather conditions in Europe, the PHEWE project: background, objectives, design,” Environmental Health, vol. 6, article 12, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. S. Conti, P. Meli, G. Minelli, et al., “Epidemiologic study of mortality during the summer 2003 heat wave in Italy,” Environmental Research, vol. 98, no. 3, pp. 390–399, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. A. Russo and L. Bisanti, “Heat wave effect on frail population in metropolitan Milano, Italy,” Epidemiology, vol. 15, pp. 97–98, 2004.
  55. J. M. Masterton and F. A. Richardson, Humidex: A Method of Quantifying Human Discomfort due to Excessive Heat and Humidity, Environment Canada, Atmospheric Environment Service, Ontario, Canada, 1979.
  56. F. C. Curriero, K. S. Heiner, J. M. Samet, S. L. Zeger, L. Strug, and J. A. Patz, “Temperature and mortality in 11 cities of the eastern United States,” American Journal of Epidemiology, vol. 155, no. 1, pp. 80–87, 2002. View at Publisher · View at Google Scholar · View at Scopus
  57. M. S. O'Neill, A. Zanobetti, and J. Schwartz, “Modifiers of the temperature and mortality association in seven US cities,” American Journal of Epidemiology, vol. 157, no. 12, pp. 1074–1082, 2003. View at Publisher · View at Google Scholar · View at Scopus
  58. M. A. McGeehin and M. Mirabelli, “The potential impacts of climate variability and change on temperature-related morbidity and mortality in the United States,” Environmental Health Perspectives, vol. 109, supplement 2, pp. 185–189, 2001. View at Scopus
  59. M. O'Neill, “Air conditioning and heat-related health effects,” Applied Environmental Science and Public Health, vol. 1, pp. 9–12, 2003.
  60. M. Medina-Ramon, A. Zanobetti, D. P. Cavanagh, and J. Schwartz, “Extreme temperatures and mortality: assessing effect modification by personal characteristics and specific cause of death in a multi-city case-only analysis,” Environmental Health Perspectives, vol. 114, pp. 1331–1336, 2006.
  61. T. R. Karl and R. W. Knight, “The 1995 Chicago heat wave: how likely is a recurrence?” Bulletin of the American Meteorological Society, vol. 78, no. 6, pp. 1107–1119, 1997. View at Scopus
  62. E. D. Hunt, J. B. Basara, and C. R. Morgan, “Significant inversions and rapid in situ cooling at a well-sited Oklahoma mesonet station,” Journal of Applied Meteorology and Climatology, vol. 46, no. 3, pp. 353–367, 2007. View at Publisher · View at Google Scholar · View at Scopus