About this Journal Submit a Manuscript Table of Contents
Advances in Meteorology
Volume 2010 (2010), Article ID 707253, 10 pages
http://dx.doi.org/10.1155/2010/707253
Research Article

Evaluation of the WRF Double-Moment 6-Class Microphysics Scheme for Precipitating Convection

1Department of Atmospheric Sciences and Global Environment Laboratory, Yonsei University, Seoul 120-749, Republic of Korea
2Forecast Research Laboratory, National Institute of Meteorological Research, Korea Meteorological Administration, Seoul 156-010, Republic of Korea
373rd Weather Group, Korea Air Force, Chungnam 321-923, Republic of Korea
4Mesoscale and Microscale Meteorology Division, National Center for Atmospheric Research, Boulder, CO 80305, USA

Received 24 December 2009; Revised 23 February 2010; Accepted 8 April 2010

Academic Editor: Zhaoxia Pu

Copyright © 2010 Song-You Hong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

This study demonstrates the characteristics of the Weather Research and Forecasting (WRF) Double-Moment 6-Class (WDM6) Microphysics scheme for representing precipitating moist convection in 3D platforms, relative to the WSM6 scheme that has been widely used in the WRF community. For a case study of convective system over the Great Plains, the WDM6 scheme improves the evolutionary features such as the bow-type echo in the leading edge of the squall line. We also found that the WRF with WDM6 scheme removes spurious oceanic rainfall that is a systematic defect resulting from the use of the WSM6 scheme alone. The simulated summer monsoon rainfall in East Asia is improved by weakening (strengthening) light (heavy) precipitation activity. These changes can be explained by the fact that the WDM6 scheme has a wider range in cloud and rain number concentrations than does the WSM6 scheme.