About this Journal Submit a Manuscript Table of Contents
Advances in Meteorology
Volume 2010 (2010), Article ID 837480, 6 pages
Research Article

Impact of Land Use Change on the Local Climate over the Tibetan Plateau

1Departments of Watershed Sciences & Plants, Soils, and Climate, Utah State University, Logan, UT, USA
2Cold and Arid regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, China
3Earth Sciences Division, Lawrence Berkeley National Laboratory, and Department of Geography, University of California at Berkeley, Berkeley, CA, USA

Received 1 January 2010; Revised 30 April 2010; Accepted 27 May 2010

Academic Editor: Zhaoxia Pu

Copyright © 2010 Jiming Jin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. F. Diaz and R. S. Bradley, “Temperature variations during the last century at high elevation sites,” Climatic Change, vol. 36, no. 3-4, pp. 253–279, 1997.
  2. J. Jin and N. L. Miller, “Toward understanding the role of ground water in hydroclimate over the Merced watershed using a single column climate model,” in The American Geophysical Union Fall Meeting, San Francisco, Calif, USA, December 2006.
  3. Q. Li and Y. Xue, “Simulated impacts of land cover change on summer climate in the Tibetan Plateau,” Environmental Research Letters, vol. 5, no. 1, Article ID 015102, 2010. View at Publisher · View at Google Scholar
  4. X. Cui, H.-F. Graf, B. Langmann, W. Chen, and R. Huang, “Climate impacts of anthropogenic land use changes on the Tibetan Plateau,” Global and Planetary Change, vol. 54, no. 1-2, pp. 33–56, 2006. View at Publisher · View at Google Scholar
  5. J. R. Christy, W. B. Norris, K. Redmond, and K. P. Gallo, “Methodology and results of calculating central California surface temperature trends: evidence of human-induced climate change?” Journal of Climate, vol. 19, no. 4, pp. 548–563, 2006. View at Publisher · View at Google Scholar
  6. J. Hansen, M. Sato, R. Ruedy, K. Lo, D. W. Lea, and M. Medina-Elizade, “Global temperature change,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 39, pp. 14288–14293, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. J. T. Houghton, Y. Ding, D. J. Griggs, et al., Climate Change 2001: The Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, 2001.
  8. L. M. Kueppers, M. A. Snyder, and M. A. Snyder, “Seasonal temperature responses to land use change in the western United States,” Global and Planetary Change, vol. 60, no. 3-4, pp. 250–264, 2008. View at Publisher · View at Google Scholar
  9. P. K. Snyder, C. Delire, and J. A. Foley, “Evaluating the influence of different vegetation biomes on the global climate,” Climate Dynamics, vol. 23, no. 3-4, pp. 279–302, 2004. View at Publisher · View at Google Scholar
  10. J. J. Feddema, K. W. Oleson, G. B. Bonan, L. O. Mearns, L. E. Buja, G. A. Meehl, and W. M. Washington, “Atmospheric science: the importance of land cover change in simulating future climates,” Science, vol. 310, no. 5754, pp. 1674–1678, 2005. View at Publisher · View at Google Scholar · View at PubMed
  11. O. W. Frauenfeld, T. Zhang, and M. C. Serreze, “Climate change and variability using European Centre for Medium-Range Weather Forecasts reanalysis (ERA-40) temperatures on the Tibetan Plateau,” Journal of Geophysical Research D, vol. 110, no. 2, pp. 1–9, 2005. View at Publisher · View at Google Scholar
  12. K. W. Oleson, Y. Dai, G. Bonan, et al., “Technical description of the community land model (CLM),” Technical Note NCAR/TN-461+STR, NCAR, 2004.