About this Journal Submit a Manuscript Table of Contents
Advances in Meteorology
Volume 2011 (2011), Article ID 190234, 7 pages
http://dx.doi.org/10.1155/2011/190234
Research Article

Diurnal and Seasonal Patterns of Methane Emissions from a Dairy Operation in North China Plain

1College of Resources and Environmental Sciences, Agricultural University of Hebei, Baoding 071000, China
2Baoding Municipal Environmental Monitoring Station, Baoding 071000, China
3College of Animal Science and Technology, Agricultural University of Hebei, Baoding 071000, China
4College of Resources and Environmental Sciences, China Agricultural University, Beijng 100193, China
5Research Branch, Agriculture and Agri-Food Canada, Ottawa, ON, Canada K1A 0C6

Received 22 August 2011; Accepted 10 November 2011

Academic Editor: Hann-Ming Henry Juang

Copyright © 2011 Zhiling Gao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Zan, X. Fu, and S. Li, “Countermeasures, present conditions, problems and development trends of the Chinese milk industry,” Chinese Agricultural Science Bulletin, vol. 21, no. 8, pp. 19–22, 2005.
  2. ADB, “Asian Least-Cost greenhouse gas abatement strategies-People’s Republic of China, 115–119,” Manila, Philippines: Asian Development Bank, 1999.
  3. D. Hongmin, L. Erda, L. Yue, R. Minjie, and Y. Qichang, “An estimation of methane emissions from agricultural activities in China,” Ambio, vol. 25, no. 4, pp. 292–296, 1996. View at Scopus
  4. H. Dong, X. Tao, H. Xin, and Q. He, “Comparison of enteric methane emissions in China for different IPCC estimation methods and production schemes,” Transactions of the American Society of Agricultural Engineers, vol. 47, no. 6, pp. 2051–2057, 2004. View at Scopus
  5. C. Liu, China Dairy Year Book 2008, China Agricultural Press, Beijing, China, 2008.
  6. J. Ma, L. Gan, X. Qian, H. Tan, and D. Xu, “The present status of milk industry in our country and the countermeasure of sustained growth,” Journal of Agricultural Mechanization Research, vol. 1, pp. 50–52, 2006 (Chinese).
  7. Z. Gao, H. Yuan, W. Ma, X. Liu, and R. L. Desjardins, “Methane emissions from a dairy feedlot during the fall and winter seasons in Northern China,” Environmental Pollution, vol. 159, no. 5, pp. 1183–1189, 2011. View at Publisher · View at Google Scholar
  8. Food and Agriculture Organization of the United Nations, “Greenhouse gas emissions from the dairy sector: A life cycle assessment,” p. 18 and p. 32, 2010.
  9. T. K. Flesch, J. D. Wilson, and E. Yee, “Backward-time Lagrangian stochastic dispersion models and their application to estimate gaseous emissions,” Journal of Applied Meteorology, vol. 34, no. 6, pp. 1320–1332, 1995. View at Scopus
  10. T. K. Flesch, J. D. Wilson, L. A. Harper, B. P. Crenna, and R. R. Sharpe, “Deducing ground-to-air emissions from observed trace gas concentrations: a field trial,” Journal of Applied Meteorology, vol. 43, no. 3, pp. 487–502, 2004. View at Scopus
  11. T. K. Flesch, J. D. Wilson, L. A. Harper, R. W. Todd, and N. A. Cole, “Determining ammonia emissions from a cattle feedlot with an inverse dispersion technique,” Agricultural and Forest Meteorology, vol. 144, no. 1-2, pp. 139–155, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. L. A. Harper, T. K. Flesch, and J. D. Wilson, “Ammonia emissions from broiler production in the San Joaquin Valley,” Poultry Science, vol. 89, no. 9, pp. 1802–1814, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. T. K. Flesch, R. L. Desjardins, and D. Worth, “Fugitive methane emissions from an agricultural biodigester,” Biomass and Bioenergy, vol. 35, no. 9, pp. 3927–3935, 2011. View at Publisher · View at Google Scholar
  14. R. P. Van Haarlem, R. L. Desjardins, Z. Gao, T. K. Flesch, and X. Li, “Methane and ammonia emissions from a beef feedlot in western Canada for a twelve-day period in the fall,” Canadian Journal of Animal Science, vol. 88, no. 4, pp. 641–649, 2008. View at Scopus
  15. Z. Gao, M. Mauder, R. L. Desjardins, T. K. Flesch, and R. P. van Haarlem, “Assessment of the backward Lagrangian Stochastic dispersion technique for continuous measurements of CH4 emissions,” Agricultural and Forest Meteorology, vol. 149, no. 9, pp. 1516–1523, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. L. A. Harper, O. T. Denmead, J. R. Freney, and F. M. Byers, “Direct measurements of methane emissions from grazing and feedlot cattle,” Journal of Animal Science, vol. 77, no. 6, pp. 1392–1401, 1999. View at Scopus
  17. R. Kinsman, F. D. Sauer, H. A. Jackson, and M. S. Wolynetz, “Methane and carbon dioxide emissions from dairy cows in full lactation monitored over a six-month period,” Journal of Dairy Science, vol. 78, no. 12, pp. 2760–2766, 1995. View at Scopus
  18. Y. L. P. Le Du, R. D. Baker, and J. M. Barker, “Milk-fed calves. 2. The effect of length of milk feeding period and milk intake upon herbage intake and performance of grazing calves,” Journal of Agricultural Science, vol. 87, pp. 197–204, 1976.
  19. K. H. Ominski, D. A. Boadi, K. M. Wittenberg, D. L. Fulawka, and J. A. Basarab, “Estimates of enteric methane emissions from cattle in Canada using the IPCC Tier-2 methodology,” Canadian Journal of Animal Science, vol. 87, no. 3, pp. 459–467, 2007. View at Scopus
  20. S. Husted, “Seasonal variation in methane emission from stored slurry and solid manures,” Journal of Environmental Quality, vol. 23, no. 3, pp. 585–592, 1994. View at Scopus
  21. IPCC, “Emissions from livestock and manure management,” in IPCC Guidelines for National Greenhouse Gas Inventories, chapter 10, 2006.
  22. A. B. Leytem, R. S. Dungan, D. L. Bjorneberg, and A. C. Koehn, “Emissions of ammonia, methane, carbon dioxide, and nitrous oxide from dairy cattle housing and manure management systems,” Journal of Environmental Quality, vol. 40, no. 5, pp. 1383–1394, 2011. View at Publisher · View at Google Scholar
  23. B. Amon, T. T. Amon, J. Boxberger, and C. Alt, “Emissions of NH3, N2O and CH4 from dairy cows housed in a farmyard manure tying stall (housing, manure storage, manure spreading),” Nutrient Cycling in Agroecosystems, vol. 60, no. 1–3, pp. 103–113, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. L. A. Harper, T. K. Flesch, J. M. Powell, W. K. Coblentz, W. E. Jokela, and N. P. Martin, “Ammonia emissions from dairy production in Wisconsin,” Journal of Dairy Science, vol. 92, no. 5, pp. 2326–2337, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. S. M. McGinn, T. K. Flesch, L. A. Harper, and K. A. Beauchemin, “An approach for measuring methane emissions from whole farms,” Journal of Environmental Quality, vol. 35, no. 1, pp. 14–20, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Laubach and F. M. Kelliher, “Methane emissions from dairy cows: comparing open-path laser measurements to profile-based techniques,” Agricultural and Forest Meteorology, vol. 135, no. 1–4, pp. 340–345, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. C. Grainger, T. Clarke, S. M. McGinn et al., “Methane emissions from dairy cows measured using the sulfur hexafluoride (SF6) tracer and chamber techniques,” Journal of Dairy Science, vol. 90, no. 6, pp. 2755–2766, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. E. Kebreab, K. Clark, C. Wagner-Riddle, and J. France, “Methane and nitrous oxide emissions from Canadian animal agriculture: a review,” Canadian Journal of Animal Science, vol. 86, no. 2, pp. 135–158, 2006. View at Scopus
  29. K. A. Beauchemin and S. M. McGinn, “Methane emissions from feedlot cattle fed barley or corn diets,” Journal of Animal Science, vol. 83, no. 3, pp. 653–661, 2005. View at Scopus
  30. X. P. C. Vergé, J. A. Dyer, R. L. Desjardins, and D. Worth, “Greenhouse gas emissions from the Canadian dairy industry in 2001,” Agricultural Systems, vol. 94, no. 3, pp. 683–693, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. F. D. Sauer, V. Fellner, R. Kinsman et al., “Methane output and lactation response in holstein cattle with monensin or unsaturated fat added to the diet,” Journal of Animal Science, vol. 76, no. 3, pp. 906–914, 1998. View at Scopus
  32. K. R. Lassey, “Livestock methane emission: from the individual grazing animal through national inventories to the global methane cycle,” Agricultural and Forest Meteorology, vol. 142, no. 2–4, pp. 120–132, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Li, Modern Dairy Cattle Production, China Agricultural University Press, Beijing, China, 2007.
  34. J. Wang, Modern Dairy Breeding, China Agriculture Press, Beijing, China, 2006.
  35. K. Johnson, M. Huyler, H. Westberg, B. Lamb, and P. Zimmerman, “Measurement of methane emissions from ruminant livestock using a SF6 tracer technique,” Environmental Science and Technology, vol. 28, no. 2, pp. 359–362, 1994. View at Scopus
  36. D. A. Boadi and K. M. Wittenberg, “Methane production from dairy and beef heifers fed forages differing in nutrient density using the sulphur hexafluoride (SF6) tracer gas technique,” Canadian Journal of Animal Science, vol. 82, no. 2, pp. 201–206, 2002. View at Scopus
  37. T. A. McAllister, E. K. Okine, G. W. Mathison, and K. J. Cheng, “Dietary, environmental and microbiological aspects of methane production in ruminants,” Canadian Journal of Animal Science, vol. 76, no. 2, pp. 231–243, 1996. View at Scopus
  38. M. A. Kujawa, Energy partitioning in steers fed cottonseed hulls and beet pulp, Ph.D Dissertation, Colorado State University, Fort Collins, Colo, USA, 1994.