About this Journal Submit a Manuscript Table of Contents
Advances in Meteorology
Volume 2011 (2011), Article ID 367854, 8 pages
http://dx.doi.org/10.1155/2011/367854
Research Article

An Analysis of Vegetation Change Trends and Their Causes in Inner Mongolia, China from 1982 to 2006

1State Key Lab of Resources and Environmental Information System, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 Datun Road, Anwai, Chaoyang District, Beijing 100101, China
2College of Resources and Environment, Graduate School of the Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China

Received 10 January 2011; Revised 2 April 2011; Accepted 9 June 2011

Academic Editor: Yasunobu Iwasaka

Copyright © 2011 Baolin Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. S. G. Thomas, “Science and the desertification debate,” Journal of Arid Environments, vol. 37, no. 4, pp. 599–608, 1997. View at Publisher · View at Google Scholar · View at Scopus
  2. Chinese Committee for Implementing UN Convention to Combat Desertification (CCICCD), China Country Paper to Combat Desertification, China Forestry Publishing House, Beijing, China, 1997.
  3. X. M. Wang, F. H. Chen, and Z. B. Dong, “The relative role of climatic and human factors in desertification in semiarid China,” Global Environmental Change, vol. 16, no. 1, pp. 48–57, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Y. Fang, S. L. Piao, J. S. He, and W. H. Ma, “Increasing terrestrial vegetation activity in China, 1982-1999,” Science in China C, vol. 47, no. 3, pp. 229–240, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Piao, J. Fang, H. Liu, and B. Zhu, “NDVI-indicated decline in desertification in China in the past two decades,” Geophysical Research Letters, vol. 32, no. 6, pp. 1–4, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. M. C. Runnström, “Is northern China winning the battle against desertification? Satellite remote sensing as a tool to study biomass trends on the ordos plateau in semiarid China,” AMBIO, vol. 29, no. 8, pp. 468–476, 2000. View at Scopus
  7. M. C. Runnström, “Rangeland development of the Mu Us Sandy Land in semiarid China: an analysis using landsat and NOAA remote sensing data,” Land Degradation and Development, vol. 14, no. 2, pp. 189–202, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. H. J. Liu, C. H. Zhou, W. M. Cheng, E. Long, and R. Li, “Monitoring sandy desertification of Otindag Sandy Land based on multi-date remote sensing images,” Acta Ecologica Sinica, vol. 28, no. 2, pp. 627–635, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Liu and T. Wang, “Aeolian desertification from the mid-1970s to 2005 in Otindag Sandy Land, Northern China,” Environmental Geology, vol. 51, no. 6, pp. 1057–1064, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Kassas, “Desertification: a general review,” Journal of Arid Environments, vol. 30, no. 2, pp. 115–128, 1995. View at Scopus
  11. S. M. Herrmann, A. Anyamba, and C. J. Tucker, “Recent trends in vegetation dynamics in the African Sahel and their relationship to climate,” Global Environmental Change, vol. 15, no. 4, pp. 394–404, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Jarlan, S. Mangiarotti, E. Mougin, P. Mazzega, P. Hiernaux, and V. Le Dantec, “Assimilation of SPOT/VEGETATION NDVI data into a sahelian vegetation dynamics model,” Remote Sensing of Environment, vol. 112, no. 4, pp. 1381–1394, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. L. Olsson, L. Eklundh, and J. Ardö, “A recent greening of the Sahel—Trends, patterns and potential causes,” Journal of Arid Environments, vol. 63, no. 3, pp. 556–566, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Anyamba and C. J. Tucker, “Analysis of Sahelian vegetation dynamics using NOAA-AVHRR NDVI data from 1981-2003,” Journal of Arid Environments, vol. 63, no. 3, pp. 596–614, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. S. M. Herrmann, A. Anyamba, and C. J. Tucker, “Recent trends in vegetation dynamics in the African Sahel and their relationship to climate,” Global Environmental Change, vol. 15, no. 4, pp. 394–404, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. C. O. Justice, B. N. Holben, and M. D. Gwynne, “Monitoring East African vegetation using AVHRR data,” International Journal of Remote Sensing, vol. 7, no. 11, pp. 1453–1474, 1986. View at Scopus
  17. S. E. Nicholson, M. L. Davenport, and A. R. Malo, “A comparison of the vegetation response to rainfall in the Sahel and East Africa, using normalized difference vegetation index from NOAA AVHRR,” Climatic Change, vol. 17, no. 2-3, pp. 209–241, 1990. View at Publisher · View at Google Scholar · View at Scopus
  18. N. Martiny, P. Camberlin, Y. Richard, and N. Philippon, “Compared regimes of NDVI and rainfall in semi-arid regions of Africa,” International Journal of Remote Sensing, vol. 27, no. 23, pp. 5201–5223, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Chamaille-Jammes, H. Fritz, and F. Murindagomo, “Spatial patterns of the NDVI-rainfall relationship at the seasonal and interannual time scales in an African savanna,” International Journal of Remote Sensing, vol. 27, no. 23, pp. 5185–5200, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Pinzon, M. E. Brown, and C. J. Tucker, “Satellite time series correction of orbital drift artifacts using empirical mode decomposition,” in Hilbert-Huang Transform: Introduction and Applications, N. Huang, Ed., pp. 167–186, 2005.
  21. J. Liu, M. Liu, H. Tian et al., “Spatial and temporal patterns of China's cropland during 1990-2000: an analysis based on Landsat TM data,” Remote Sensing of Environment, vol. 98, no. 4, pp. 442–456, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. R. G. Congalton and K. Green, In Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, Lewis Publishers, Boca Raton, Fla, USA, 1999.
  23. G. Shaw and D. Wheeler, Statistical Techniques in Geographical Analysis, John Wiley & Sons, Chichester, UK, 1985.