About this Journal Submit a Manuscript Table of Contents
Advances in Meteorology
Volume 2011 (2011), Article ID 543146, 8 pages
Research Article

Solar Activity and Svalbard Temperatures

1Department of Physics and Technology, University of Tromsø, 9037 Tromsø, Norway
2Finance, Telenor Norway, Snarøyveien 30, 1331 Fornebu, Norway
3Department of Geosciences, University of Oslo, P.O. Box 1047 Blindern, 0316 Oslo, Norway
4Department of Geology, University Centre in Svalbard, Pb. 156, 9171 Longyearbyen, Norway

Received 14 September 2011; Revised 23 November 2011; Accepted 29 November 2011

Academic Editor: Stefania Argentini

Copyright © 2011 Jan-Erik Solheim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The long temperature series at Svalbard (Longyearbyen) show large variations and a positive trend since its start in 1912. During this period solar activity has increased, as indicated by shorter solar cycles. The temperature at Svalbard is negatively correlated with the length of the solar cycle. The strongest negative correlation is found with lags 10–12 years. The relations between the length of a solar cycle and the mean temperature in the following cycle are used to model Svalbard annual mean temperature and seasonal temperature variations. Residuals from the annual and winter models show no autocorrelations on the 5 per cent level, which indicates that no additional parameters are needed to explain the temperature variations with 95 per cent significance. These models show that 60 per cent of the annual and winter temperature variations are explained by solar activity. For the spring, summer, and fall temperatures autocorrelations in the residuals exist, and additional variables may contribute to the variations. These models can be applied as forecasting models. We predict an annual mean temperature decrease for Svalbard of 3 . 5 ± 2 °C from solar cycle 23 to solar cycle 24 (2009–20) and a decrease in the winter temperature of 6 °C.