About this Journal Submit a Manuscript Table of Contents
Advances in Meteorology
Volume 2012 (2012), Article ID 238589, 10 pages
http://dx.doi.org/10.1155/2012/238589
Research Article

A Parameterized Method for Air-Quality Diagnosis and Its Applications

1Center for Atmospheric Composition Observing & Service, Chinese Academy of Meteorological Sciences, Beijing 100081, China
2Air Quality Research Division, Science & Technology Branch, Environment Canada, 4905 Dufferin Street, Toronto, ON, Canada M3H 5T4

Received 15 June 2012; Revised 28 September 2012; Accepted 3 October 2012

Academic Editor: Zhanqing Li

Copyright © 2012 J. Z. Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. Sabbah, “Impact of aerosol on air temperature in Kuwait,” Atmospheric Research, vol. 97, no. 3, pp. 303–314, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. G. C. Fang and S. C. Chang, “Atmospheric particulate (PM10 and PM2.5) mass concentration and seasonal variation study in the Taiwan area during 2000–2008,” Atmospheric Research, vol. 98, no. 2-4, pp. 368–377, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. X. Y. Zhang, Y. Q. Wang, W. L. Lin et al., “Changes of atmospheric composition and optical properties over beijing 2008 olympic monitoring campaign,” Bulletin of the American Meteorological Society, vol. 90, no. 11, pp. 1633–1651, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Liu, W. Li, and X. Zhou, “Simulation of secondary aerosols over North China in summer,” Science in China D, vol. 48, no. 2, pp. 185–195, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. G. Z. Zhang, X. D. Xu, J. Z. Wang, and Y. Q. Yang, “A study of characteristics and evolution of urban heat island over Beijing and its surrouding area,” Journal of Applied Meteorological Science, vol. 13, p. 41, 2002.
  6. X. A. Xia, H. B. Chen, P. C. Wang, X. M. Zong, J. H. Qiu, and P. Gouloub, “Aerosol properties and their spatial and temporal variations over North China in spring 2001,” Tellus B, vol. 57, no. 1, pp. 28–39, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Xue, J. Ma, P. Yan, and X. Pan, “Impacts of pollution and dust aerosols on the atmospheric optical properties over a polluted rural area near Beijing city,” Atmospheric Research, vol. 101, no. 4, pp. 835–843, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Wang, Y. Yang, G. Zhang, and S. Yu, “Climatic trend of cloud amount related to the aerosol characteristics in Beijing during,” Acta Meteorologica Sinica, vol. 24, no. 6, pp. 762–775, 2010. View at Scopus
  9. M. El-Metwally, S. C. Alfaro, M. M. Abdel Wahab, A. S. Zakey, and B. Chatenet, “Seasonal and inter-annual variability of the aerosol content in Cairo (Egypt) as deduced from the comparison of MODIS aerosol retrievals with direct AERONET measurements,” Atmospheric Research, vol. 97, no. 1-2, pp. 14–25, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. C. H. Zhou, S. L. Gong, X. Y. Zhang et al., “Development and evaluation of an operational SDS forecasting system for East Asia: CUACE/Dust,” Atmospheric Chemistry and Physics, vol. 8, no. 4, pp. 787–798, 2008. View at Scopus
  11. Y. Q. Wang, X. Y. Zhang, R. Arimoto, J. J. Cao, and Z. X. Shen, “Characteristics of carbonate content and carbon and oxygen isotopic composition of northern China soil and dust aerosol and its application to tracing dust sources,” Atmospheric Environment, vol. 39, no. 14, pp. 2631–2642, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. S. L. Gong, L. A. Barrie, J. P. Blanchet et al., “Canadian aerosol module: a size-segregated simulation of atmospheric aerosol processes for climate and air quality models 1. Module development,” Journal of Geophysical Research D, vol. 108, no. 1, pp. 3–16, 2003. View at Scopus
  13. Y. Q. Yang, J. Z. Wang, Q. Hou, Y. Li, and C. H. Zhou, “Discriminant Genetic Algorithm Extended (DGAE) model for seasonal sand and dust storm prediction,” Science China Earth Sciences, vol. 54, no. 1, pp. 10–18, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. L. Han, G. Zhuang, Y. Sun, and Z. Wang, “Local and non-local sources of airborne particulate pollution at Beijing—the ratio of Mg/Al as an element tracer for estimating the contributions of mineral aerosols from outside Beijing,” Science in China B, vol. 48, no. 3, pp. 253–264, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. K. K. Sui, Z. F. Wang, J. Yang, F. B. Xie, and Y. Zhao, “Beijing persistent PM10 pollution and its relationship with general meteorological features,” Research of Environmental Sciences, vol. 20, p. 77, 2007.
  16. Y. Ji, H. J. Fan, Q. F. Wang, and L. H. Nie, “Air particle concentration and meteorological factors,” Journal of Environmental Health, vol. 25, p. 554, 2008.
  17. X. Xiao, L. Pengfei, G. Fuhai, et al., “Comparison of black carbon aerosols in urban and suburban areas of Shanghai,” Journal of Applied Meteorological Science, vol. 22, p. 158, 2011.
  18. S. Y. Yu, Z. Zhang, C. Q. Peng, et al., “Effects of meteorological factors on SO2 and other atmospheric pollutions in Shenzhen China,” Journal of Environment and Health, vol. 25, p. 483, 2008.
  19. G. Zhang, L. Bian, J. Wang, Y. Yang, W. Yao, and X. Xu, “The boundary layer characteristics in the heavy fog formation process over Beijing and its adjacent areas,” Science in China D, vol. 48, no. 2, pp. 88–101, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. X. Pang, Y. Mu, X. Lee, Y. Zhang, and Z. Xu, “Influences of characteristic meteorological conditions on atmospheric carbonyls in Beijing, China,” Atmospheric Research, vol. 93, no. 4, pp. 913–919, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. X. Y. Tang, Y. H. Zhang, and M. Shao, Atmospheric Environment Chemistry, Higher Education Press, Beijing, Japan, 2006.
  22. Y. Q. Yang, Q. Hou, C. H. Zhou, H. L. Liu, Y. Q. Wang, and T. Niu, “Sand/dust storm processes in Northeast Asia and associated large-scale circulations,” Atmospheric Chemistry and Physics, vol. 8, no. 1, pp. 25–33, 2008. View at Scopus
  23. S. Wang and X. L. Zhang, “Meteorological features of PM10 pollution in Beijing,” Journal of Applied Meteorology, vol. 13, p. 177, 2002.
  24. C. D. O'Dowd, J. A. Lowe, and M. H. Smith, “The effect of clouds on aerosol growth in the rural atmosphere,” Atmospheric Research, vol. 54, no. 4, pp. 201–221, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. Wang, J. Guo, T. Wang et al., “Influence of regional pollution and sandstorms on the chemical composition of cloud/fog at the summit of Mt. Taishan in northern China,” Atmospheric Research, vol. 99, no. 3-4, pp. 434–442, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. C. Honoré, L. Rouïl, R. Vautard et al., “Predictability of European air quality: assessment of 3 years of operational forecasts and analyses by the PREV'AIR system,” Journal of Geophysical Research D, vol. 113, no. 4, Article ID D04301, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. S. A. McKeen, S. H. Chung, J. Wilczak et al., “Evaluation of several PM2.5 forecast models using data collected during the ICARTT/NEAQS 2004 field study,” Journal of Geophysical Research D, vol. 112, no. 10, Article ID D10S20, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. M. D. Moran, et al., “Particulate-Matter Forecasting with GEM-MACH15, A New Canadian Air-Quality Forecast Model,” in Proceedings of the 30th NATO/SPS ITM on Air Pollution Modelling and Its Application, San Francisco, Calif, USA, 2009.
  29. H. Che, G. Shi, A. Uchiyama et al., “Intercomparison between aerosol optical properties by a PREDE skyradiometer and CIMEL sunphotometer over Beijing, China,” Atmospheric Chemistry and Physics, vol. 8, no. 12, pp. 3199–3214, 2008. View at Scopus
  30. Y. Q. Yang, J. Z. Wang, Q. Hou, and Y. Q. Wang, “A plam index for beijing stabilized weather forecast in summer over Beijing,” Journal of Applied Meteorological Science, vol. 20, p. 649, 2009.
  31. F. Y. Wei, Modern Diagnostic Techniques for Climatologically Statistics, China Meteorology Press, 1999.
  32. H. L. Kuo, “Convective weather in conditionally unstable atmosphere,” Tellus, vol. 13, p. 441, 1961.
  33. H. L. Kuo, “On formation and intensification of tropical cyclone through latent heat release in cumulus convection,” Journal of the Atmospheric Sciences, vol. 22, p. 40, 1965.
  34. H. L. Kuo, “Further studies on the parameterization of the influence of cumulus convection in large-scale flows,” Journal of the Atmospheric Sciences, vol. 31, p. 1232, 1974.
  35. S. Gao, X. Wang, and Y. Zhou, “Generation of generalized moist potential vorticity in a frictionless and moist adiabatic flow,” Geophysical Research Letters, vol. 31, no. 12, p. L12113, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. A. B. Johnson and D. G. Baker, “Climatology of diffusion potential classes for Minneapolis-St. Paul,” Journal of Applied Meteorology, vol. 36, no. 12, pp. 1620–1628, 1997. View at Scopus
  37. S. Gao, Y. Zhou, T. Lei, and J. Sun, “Analyses of hot and humid weather in Beijing city in summer and its dynamical identification,” Science in China, Series D: Earth Sciences, vol. 48, no. 2, pp. 128–137, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. J. Z. Wang and Y. Q. Yang, Contemporary Weather Engineering, Meteorological Press, Beijing, Japan, 2000.