About this Journal Submit a Manuscript Table of Contents
Advances in Meteorology
Volume 2012 (2012), Article ID 321649, 22 pages
http://dx.doi.org/10.1155/2012/321649
Research Article

Applying a Mesoscale Atmospheric Model to Svalbard Glaciers

1Department of Earth Sciences, Uppsala University, Villavägen 16, 75236 Uppsala, Sweden
2Institute of Meteorology and Geophysics, Innsbruck University, 6020 Innsbruck, Austria
3Institute for Marine and Atmospheric Research, Utrecht University, 3508 TC Utrecht, The Netherlands

Received 2 December 2011; Revised 16 February 2012; Accepted 15 March 2012

Academic Editor: Igor N. Esau

Copyright © 2012 Björn Claremar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. O. Hagen, J. Kohler, K. Melvold, and J. G. Winther, “Glaciers in Svalbard: mass balance, runoff and freshwater flux,” Polar Research, vol. 22, no. 2, pp. 145–159, 2003. View at Scopus
  2. P. Lemke, J. Ren, and R. B. Alley etal, “Observations: changes in snow, ice and frozen ground,” in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, D. Qin, M. Manning et al., Eds., Cambridge University Press, Cambridge, UK, 2007.
  3. C. Nuth, G. Moholdt, J. Kohler, J. O. Hagen, and A. Kääb, “Svalbard glacier elevation changes and contribution to sea level rise,” Journal of Geophysical Research F, vol. 115, no. 1, Article ID F01008, pp. 1–16, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. G. Moholdt, J. O. Hagen, T. Eiken, and T. V. Schuler, “Geometric changes and mass balance of the Austfonna ice cap, Svalbard,” Cryosphere, vol. 4, no. 1, pp. 21–34, 2010. View at Scopus
  5. H. Svendsen, A. Beszczynska-Møller, J. O. Hagen et al., “The physical environment of Kongsfjorden-Krossfjorden, and Arctic fjord system in Svalbard,” Polar Research, vol. 21, no. 1, pp. 133–166, 2002. View at Scopus
  6. H. Hop, T. Pearson, E. N. Hegseth et al., “The marine ecosystem of Kongsfjorden, Svalbard,” Polar Research, vol. 21, no. 1, pp. 167–208, 2002. View at Scopus
  7. J. G. Winther, O. Bruland, K. Sand et al., “Snow research in Svalbard—an overview,” Polar Research, vol. 22, no. 2, pp. 125–144, 2003. View at Scopus
  8. J. Kohler and R. Aanes, “Effect of winter snow and ground-icing on a Svalbard reindeer population: results of a simple snowpack model,” Arctic, Antarctic, and Alpine Research, vol. 36, no. 3, pp. 333–341, 2004. View at Scopus
  9. S. Willmes, J. Bareiss, C. Haas, and M. Nicolaus, “Observing snowmelt dynamics on fast ice in Kongsfjorden, Svalbard, with NOAA/AVHRR data and field measurements,” Polar Research, vol. 28, no. 2, pp. 203–213, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Westermann, J. Lüers, M. Langer, K. Piel, and J. Boike, “The annual surface energy budget of a high-arctic permafrost site on Svalbard, Norway,” Cryosphere, vol. 3, no. 2, pp. 245–263, 2009. View at Scopus
  11. AMAP Secratariat, “Snow, Water, Ice and Permafrost in the Arctic (SWIPA) 2011—Executive Summary,” AMAP, Norway, 2011, http://www.amap.no/swipa/.
  12. I. Hanssen-Bauer and E. J. Førland, “Temperature and precipitation variations in Norway and their links to atmospheric circulation,” International Journal of Climatology, vol. 20, no. 14, pp. 1693–1708, 2000.
  13. J. J. Cassano, J. E. Box, D. H. Bromwich, L. Li, and K. Steffen, “Evaluation of polar MM5 simulations of Greenland's atmospheric circulation,” Journal of Geophysical Research D, vol. 106, no. 24, pp. 33867–33889, 2001. View at Scopus
  14. H. Wei, W. J. Gutowski, C. J. Vorosmarty, and B. M. Fekete, “Calibration and validation of a regional climate model for pan-Arctic hydrologic simulation,” Journal of Climate, vol. 15, no. 22, pp. 3222–3236, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. J. A. Curry and A. H. Lynch, “Comparing arctic regional climate model,” EOS Transactions of the American Geophysical Union, vol. 83, no. 9, pp. 83–87, 2002. View at Scopus
  16. M. Tjernström, M. Žagar, G. Svensson et al., “Modelling the Arctic boundary layer: an evaluation of six ARCMIP regional-scale models using data from the SHEBA project,” Boundary-Layer Meteorology, vol. 117, no. 2, pp. 337–381, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Jones, K. Wyser, A. Ullerstig, and U. Willen, “The RossbyCentre Regional Atmospheric Climate model (RCA) Part II: applicationto the arctic climate,” AMBIO, vol. 33, no. 4-5, pp. 261–266, 2004.
  18. A. Rinke, K. Dethloff, J. J. Cassano et al., “Evaluation of an ensemble of Arctic regional climate models: spatiotemporal fields during the SHEBA year,” Climate Dynamics, vol. 26, no. 5, pp. 459–472, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. L. Rontu, F. Obleitner, S. Gollvik, C. Zingerle, and S. Tijm, “HIRLAM experiments on surface energy balance accross Vatnajökull,” Meteorology and Atmospheric Physics, vol. 103, no. 1–4, pp. 67–77, 2009.
  20. J. J. Cassano, M. E. Higgins, and M. W. Seefeldt, “Performance of the weather research and forecasting (WRF) model for month-long pan-arctic simulations,” Monthly Weather Review, vol. 139, no. 11, pp. 3469–3488, 2011. View at Publisher · View at Google Scholar
  21. D. K. Perovich, E. L. Andreas, J. A. Curry, et al., “Year on ice gives climate insights,” EOS Transactions of the American Geophysical Union, vol. 80, no. 41, p. 481, 1999.
  22. P. Skeie and S. Grønas, “Strongly stratified easterly flows across Spitsbergen,” Tellus A, vol. 52, no. 5, pp. 473–486, 2000. View at Scopus
  23. D. H. Bromwich, J. J. Cassano, T. Klein et al., “Mesoscale modeling of katabatic winds over Greenland with the Polar MM5,” Monthly Weather Review, vol. 129, no. 9, pp. 2290–2309, 2001. View at Scopus
  24. A. D. Sandvik and B. R. Furevik, “Case study of a coastal jet at Spitsbergen—comparison of SAR- and model-estimated wind,” Monthly Weather Review, vol. 130, no. 4, pp. 1040–1051, 2002. View at Scopus
  25. H. Olafsson and H. Agustsson, “Gravity wave breaking in easterly flow over Greenland and associated low level barrier- and reverse tip-jets,” Meteorology and Atmospheric Physics, vol. 104, no. 3-4, pp. 191–197, 2009.
  26. S. Grønas, “Mesoscale phenomena induced by mountains over Scandinavia and Spitsbergen,” in Proceedings of the Workshop on Orography, pp. 165–182, ECMWF, Reading, UK, 1997.
  27. A. Dörnbrack, I. S. Stachlewska, C. Ritter, and R. Neuber, “Aerosol distribution around Svalbard during intense easterly winds,” Atmospheric Chemistry and Physics, vol. 10, no. 4, pp. 1473–1490, 2010. View at Scopus
  28. K. Dethloff, M. Schwager, J. H. Christensen et al., “Recent greenland accumulation estimated from regional climate model simulations and ice core analysis,” Journal of Climate, vol. 15, no. 19, pp. 2821–2832, 2002. View at Scopus
  29. M. Bougamont, J. L. Bamber, and W. Greuell, “A surface mass balance model for the Greenland Ice Sheet,” Journal of Geophysical Research F, vol. 110, no. 4, Article ID F04018, pp. 1–13, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. J. E. Box, D. H. Bromwich, B. A. Veenhuis et al., “Greenland ice sheet surface mass balance variability (1988–2004) from calibrated polar MM5 output,” Journal of Climate, vol. 19, no. 12, pp. 2783–2800, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. J. Ettema, M. R. van den Broeke, E. van Meijgaard et al., “Higher surface mass balance of the Greenland ice sheet revealed by high-resolution climate modeling,” Geophysical Research Letters, vol. 36, no. 12, Article ID L12501, pp. 1–5, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. W. J. J. van Pelt, J. Oerlemans, C. H. Reijmer, V. A. Pohjola, R. Petterson, and J. H. van Angelen, “Simulating melt, runoff and refreezing on Nordenskiöldbreen, Svalbard, using a coupled snow and energy balance model,” The Cryosphere Discussions, vol. 6, pp. 211–266, 2011.
  33. W. C. Skamarock, J. B. Klemp, J. Dudhia et al., “A description of the advanced research WRF version 2,” NCAR Technical Note TN-468 + STR, Boulder, Colo, USA, 2005.
  34. W. C. Skamarock, J. B. Klemp, and J. Dudhia et al, “A description of the advanced research WRF version 3,” NCAR Technical Note TN-475+STR, Boulder, Colo, USA, 2008.
  35. K. M. Hines and D. H. Bromwich, “Development and testing of polar weather research and forecasting (WRF) model. Part I: greenland ice sheet meteorology,” Monthly Weather Review, vol. 136, no. 6, pp. 1971–1989, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. D. H. Bromwich, K. M. Hines, and L. S. Bai, “Development and testing of Polar Weather Research and Forecasting model: 2. Arctic Ocean,” Journal of Geophysical Research D, vol. 114, no. 8, Article ID D08122, pp. 1–22, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. K. M. Hines, D. H. Bromwich, L. S. Bai, M. Barlage, and A. G. Slater, “Development and testing of polar WRF. Part III: Arctic land,” Journal of Climate, vol. 24, no. 1, pp. 26–48, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. N. Mölders and G. Kramm, “A case study on wintertime inversions in Interior Alaska with WRF,” Atmospheric Research, vol. 95, no. 2-3, pp. 314–332, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. D. F. Porter, J. J. Cassano, and M. C. Serreze, “Analysis of the Arctic atmospheric energy budget in WRF: a comparison with reanalyses and satellite observations,” Journal of Geophysical Research, vol. 116, Article ID D22108, pp. 1–20, 2011. View at Publisher · View at Google Scholar
  40. A. B. Wilson, D. H. Bromwich, and K. M. Hines, “Evaluation of polar WRF forecasts on the Arctic System Reanalysis domain: surface and upper air analysis,” Journal of Geophysical Research D, vol. 116, no. 11, Article ID D11112, pp. 1–18, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. T. Kilpeläinen, T. Vihma, and H. Ólafsson, “Modelling of spatial variability and topographic effects over Arctic fjords in Svalbard,” Tellus A, vol. 63, no. 2, pp. 223–237, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Kirkwood, M. Mihalikova, T. N. Rao, and K. Satheesan, “Turbulence associated with mountain waves over Northern Scandinavia—a case study using the ESRAD VHF radar and the WRF mesoscale model,” Atmospheric Chemistry and Physics, vol. 10, no. 8, pp. 3583–3599, 2010. View at Scopus
  43. E. Mäkiranta, T. Vihma, A. Sjöblom, and E. M. Tastula, “Observations and modelling of the atmospheric boundary layer over sea-ice in a Svalbard Fjord,” Boundary-Layer Meteorology, vol. 140, no. 1, pp. 105–123, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Reeve and E. Kolstad, “The spitsbergen south cape tip jet,” Quarterly Journal of the Royal Meteorological Society, vol. 137, no. 660, pp. 1739–1748, 2011. View at Publisher · View at Google Scholar
  45. E. Stütz, Dynamically and thermally driven flows over and around Svalbard, a case study based on numerical simulations and airborne measurements, Diploma thesis, Institute of Meteorology and Geophysics, Innsbruck University, Innsbruck, Austria, 2010.
  46. D. P. Dee, S. M. Uppala, A. J. Simmons et al., “The ERA-Interim reanalysis: configuration and performance of the data assimilation system,” Quarterly Journal of the Royal Meteorological Society, vol. 137, no. 656, pp. 553–597, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. U. Heikkilä, A. Sandvik, and A. Sorteberg, “Dynamical downscaling of ERA-40 in complex terrain using the WRF regional climate model,” Climate Dynamics, vol. 37, no. 7-8, pp. 845–866, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. M.-D. Chou and M. J. Suarez, “An efficient thermal infrared radiation parametrization for use in general circulation models,” NASA Technical Memorandum 104606, 1994.
  49. E. J. Mlawer, S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, “Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave,” Journal of Geophysical Research D, vol. 102, no. 14, pp. 16663–16682, 1997. View at Publisher · View at Google Scholar · View at Scopus
  50. G. A. Grell and D. Devenyi, “A generalized approach to parameterizing convection combining ensemble and data assimilation techniques,” Geophysical Research Letters, vol. 29, no. 14, article 1693, 2002. View at Publisher · View at Google Scholar
  51. H. Morrison, J. A. Curry, and V. I. Khvorostyanov, “A new double-moment microphysics parameterization for application in cloud and climate models. Part I: description,” Journal of the Atmospheric Sciences, vol. 62, no. 6, pp. 1665–1677, 2005. View at Publisher · View at Google Scholar · View at Scopus
  52. Z. I. Janjic, “The surface layer in the NCEP Eta Model,” in Proceedings of the 11th Conference on Numerical Weather Prediction, pp. 354–355, American Meteorological Society, Norfolk, Va, USA, August 1996.
  53. Z. I. Janjic, “Non singular Implementation of the Mellor–Yamada Level 2.5 Scheme in the NCEP Meso model,” NCEP Office Note no. 437, 2002.
  54. G. L. Mellor and T. Yamada, “Development of a turbulence closure model for geophysical fluid problems.,” Reviews of Geophysics & Space Physics, vol. 20, no. 4, pp. 851–875, 1982. View at Scopus
  55. A. S. Monin and A. M. Obukhov, “Basic laws of turbulent mixing in the surface layer of the atmosphere,” Trudy Geofizicheskogo Instituta, Akademiya Nauk SSSR, vol. 24, no. 151, pp. 163–187, 1954.
  56. F. Chen and J. Dudhia, “Coupling and advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: model implementation and sensitivity,” Monthly Weather Review, vol. 129, no. 4, pp. 569–585, 2001. View at Scopus
  57. M. Möller, R. Möller, É. Beaudon, et al., “Snowpack characteristics of Vestfonna and de Geerfonna (Nordaustlandet, Svalbard)—a spatiotemporal analysis based on multiyear snow-pit data,” Geografiska Annaler, vol. 93A, no. 4, pp. 273–285, 2011. View at Publisher · View at Google Scholar
  58. S.-Y. Hong and J.-O. Lin, “The WRF single-moment 6-class microphysics scheme (WSM6),” Journal of the Korean Meteorological Society, vol. 42, no. 2, pp. 129–151, 2006.
  59. S. Sukoriansky, B. Galperin, and V. Perov, “Application of a new spectral theory of stably stratified turbulence to the atmospheric boundary layer over sea ice,” Boundary-Layer Meteorology, vol. 117, no. 2, pp. 231–257, 2005. View at Publisher · View at Google Scholar · View at Scopus
  60. T. Kilpeläinen, T. Vihma, M. Manninen et al., “ Modelling the vertical structure of the atmospheric boundary layer over Arctic fjords in Svalbard,” Quarterly Journal of the Royal Meteorological Society. In press. View at Publisher · View at Google Scholar
  61. M. Nakanishi and H. Niino, “An improved Mellor-Yamada Level-3 model: its numerical stability and application to a regional prediction of advection fog,” Boundary-Layer Meteorology, vol. 119, no. 2, pp. 397–407, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. R. L. Hawley, O. Brandt, E. M. Morris, J. Kohler, A. P. Shepherd, and D. J. Wingham, “Techniques for measuring high-resolution firn density profiles: case study from Kongsvegen, Svalbard,” Journal of Glaciology, vol. 54, no. 186, pp. 463–468, 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. M. A. G. den Ouden, C. H. Reijmer, V. Pohjola, R. S. W. van de Wal, J. Oerlemans, and W. Boot, “Stand-alone single-frequency GPS ice velocity observations on Nordenskiöldbreen, Svalbard,” Cryosphere, vol. 4, no. 4, pp. 593–604, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. M. Möller, R. Finkelnburg, M. Braun et al., “Climatic mass balance of the ice cap Vestfonna, Svalbard: a spatially distributed assessment using ERA-Interim and MODIS data,” Journal of Geophysical Research, vol. 116, Article ID F03009, pp. 1–14, 2011. View at Publisher · View at Google Scholar
  65. V. A. Pohjola, P. Kankaanpää, J. C. Moore, and T. Pastusiak, “Preface: the international polar year project “Kinnvika”—arctic warming and impact research at 80° N,” Geografiska Annaler, vol. 93A, no. 4, pp. 201–208, 2011. View at Publisher · View at Google Scholar
  66. F. Obleitner and M. Lehning, “Measurement and simulation of snow and superimposed ice at the Kongsvegen glacier, Svalbard (Spitzbergen),” Journal of Geophysical Research D, vol. 109, no. 4, Article ID D04106, pp. 1–12, 2004. View at Publisher · View at Google Scholar · View at Scopus
  67. G. König-Langlo and E. Augstein, “Parameterization of the downward long-wave radiation at the earth’s surface in polar regions,” Meteorologische Zeitschrift, vol. 3, no. 6, pp. 343–347, 1994.
  68. C. R. Stearns, G. A. Weidner, and L. M. Keller, “Atmospheric circulation around the Greenland Crest,” Journal of Geophysical Research, vol. 102, no. D12, pp. 13801–13812, 1997.
  69. V. A. Pohjola, J. C. Moore, E. Isaksson et al., “Effect of periodic melting on geochemical and isotopic signals in an ice core from Lomonosovfonna, Svalbard,” Journal of Geophysical Research D, vol. 107, no. 4, Article ID 4036, pp. 1–14, 2002. View at Publisher · View at Google Scholar · View at Scopus
  70. S. Söderberg and O. Parmhed, “Numerical modelling of katabatic flow over a malting outflow glacier,” Boundary-Layer Meteorol, vol. 120, no. 3, pp. 507–543, 2006.
  71. D. Wilks, Statistical Methods in the Atmospheric Sciences, Academic Press, 2006.
  72. R. B. Stull, An Introduction to Boundary Layer Meteorology, Kluwer Academic Publishers, 1988.
  73. F. Pellicciotti, T. Raschle, T. Huerlimann, M. Carenzo, and P. Burlando, “Transmission of solar radiation through clouds on melting glaciers: a comparison of parameterizations and their impact on melt modelling,” Journal of Glaciology, vol. 57, no. 202, pp. 367–381, 2011. View at Scopus
  74. S. Forsström, J. Ström, C. A. Pedersen, E. Isaksson, and S. Gerland, “Elemental carbon distribution in Svalbard snow,” Journal of Geophysical Research D, vol. 114, no. 19, Article ID D19112, pp. 1–8, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. B. Aamaas, C. E. Bøggild, F. Stordal, T. Berntsen, K. Holmén, and J. Ström, “Elemental carbon deposition to Svalbard snow from Norwegian settlements and long-range transport,” Tellus B, vol. 63, no. 3, pp. 340–351, 2011. View at Publisher · View at Google Scholar · View at Scopus