About this Journal Submit a Manuscript Table of Contents
Advances in Meteorology
Volume 2012 (2012), Article ID 413584, 13 pages
http://dx.doi.org/10.1155/2012/413584
Research Article

Importance of the Numerical Representation of Shallow and Deep Convection for Simulations of Dust Transport over a Desert Region

Disaster Prevention Research Institute, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan

Received 18 January 2012; Accepted 11 March 2012

Academic Editor: Dimitris G. Kaskaoutis

Copyright © 2012 Tetsuya Takemi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. K. S. Ching and J. A. Alkezweeny, “Tracer study of vertical exchange by cumulus clouds.,” Journal of Climate & Applied Meteorology, vol. 25, no. 11, pp. 1702–1711, 1986. View at Scopus
  2. A. S. Goudie and N. J. Middleton, Desert Dust in the Global System, Springer, Berlin, Germany, 2006.
  3. Y. Shao, Physics and Modeling of Wind Erosion, Springer, Berlin, Germany, 2nd edition, 2008.
  4. C. Luo, N. Mahowald, and C. Jones, “Temporal variability of dust mobilization and concentration in source regions,” Journal of Geophysical Research D, vol. 109, no. 20, Article ID D20202, 13 pages, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Koch and N. O. Renno, “The role of convective plumes and vortices on the global aerosol budget,” Geophysical Research Letters, vol. 32, no. 18, Article ID L18806, 5 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Holzer and T. M. Hall, “Low-level transpacific transport,” Journal of Geophysical Research D, vol. 112, no. 9, Article ID D09103, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Yasui, J. Zhou, L. Liu, T. Itabe, K. Mizutani, and T. Aoki, “Vertical profiles of aeolian dust in a desert atmosphere observed using lidar in Shapotou, China,” Journal of the Meteorological Society of Japan, vol. 83, no. 3, pp. 149–171, 2005. View at Scopus
  8. M. Yasui, L. Liu, T. Itabe et al., “Dust profiles of the atmospheric boundary layer observed by a laser ceilometer at Shapotou, China in 2004,” in Lidar Remote Sensing for Environmental Monitoring VII, U. N. Singh, T. Itabe, and D. N. Rao, Eds., vol. 6409 of Proceedings of SPIE, Goa, India, November 2006.
  9. M. Gamo, “Thickness of the dry convection and large-scale subsidence above deserts,” Boundary-Layer Meteorology, vol. 79, no. 3, pp. 265–278, 1996. View at Scopus
  10. T. Takemi and T. Satomura, “Numerical experiments on the mechanisms for the development and maintenance of long-lived squall lines in dry environments,” Journal of the Atmospheric Sciences, vol. 57, no. 11, pp. 1718–1740, 2000. View at Scopus
  11. R. V. Cakmur, R. L. Miller, and O. Torres, “Incorporating the effect of small-scale circulations upon dust emission in an atmospheric general circulation model,” Journal of Geophysical Research D, vol. 109, no. 7, Article ID D07201, 20 pages, 2004. View at Scopus
  12. R. L. Miller, J. Perlwitz, and I. Tegen, “Feedback upon dust emission by dust radiative forcing through the planetary boundary layer,” Journal of Geophysical Research D, vol. 109, no. 24, Article ID D24209, 17 pages, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. W. W. Grabowski, X. Wu, and M. W. Moncrieff, “Cloud-resolving modeling of tropical cloud systems during phase III of GATE. Part I: two-dimensional experiments,” Journal of the Atmospheric Sciences, vol. 53, no. 24, pp. 3684–3709, 1996. View at Scopus
  14. M. L. Weisman, W. C. Skamarock, and J. B. Klemp, “The resolution dependence of explicitly modeled convective systems,” Monthly Weather Review, vol. 125, no. 4, pp. 527–548, 1997. View at Scopus
  15. G. H. Bryan, J. C. Wyngaard, and J. M. Fritsch, “Resolution requirements for the simulation of deep moist convection,” Monthly Weather Review, vol. 131, pp. 2394–2416, 2003.
  16. G. H. Bryan, “Spurious convective organization in simulated squall lines owing to moist absolutely unstable layers,” Monthly Weather Review, vol. 133, no. 7, pp. 1978–1997, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Liu and M. W. Moncrieff, “Sensitivity of cloud-resolving simulations of warm-season convection to cloud microphysics parameterizations,” Monthly Weather Review, vol. 135, no. 8, pp. 2854–2868, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. R. J. Trapp, B. A. Halvorson, and N. S. Diffenbaugh, “Telescoping, multimodel approaches to evaluate extreme convective weather under future climates,” Journal of Geophysical Research D, vol. 112, no. 20, Article ID D20109, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. F. Zhang, N. Bei, R. Rotunno, C. Snyder, and C. C. Epifanio, “Mesoscale predictability of moist baroclinic waves: convection-permitting experiments and multistage error growth dynamics,” Journal of the Atmospheric Sciences, vol. 64, no. 10, pp. 3579–3594, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Smagorinsky, “General circulation experiments with the primitive equations. I: The basic experiment,” Monthly Weather Review, vol. 91, pp. 99–164, 1963.
  21. D. K. Lilly, “On the numerical simulation of buoyant convection,” Tellus, vol. 14, pp. 148–172, 1962.
  22. J. W. Deardorff, “Stratocumulus-capped mixed layers derived from a three-dimensional model,” Boundary-Layer Meteorology, vol. 18, no. 4, pp. 495–527, 1980. View at Publisher · View at Google Scholar · View at Scopus
  23. J. B. Klemp and R. B. Wilhelmson, “The simulation of three-dimensional convective storm dynamics,” Journal of the Atmospheric Sciences, vol. 35, pp. 1070–1096, 1978.
  24. T. Takemi and R. Rotunno, “The effects of subgrid model mixing and numerical filtering in simulations of mesoscale cloud systems,” Monthly Weather Review, vol. 131, pp. 2085–2101, 2003, Corrigendum, vol. 133, pp. 339–341, 2005.
  25. W. C. Skamarock, “Evaluating mesoscale NWP models using kinetic energy spectra,” Monthly Weather Review, vol. 132, no. 12, pp. 3019–3032, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Khairoutdinov and D. Randall, “High-resolution simulation of shallow-to-deep convection transition over land,” Journal of the Atmospheric Sciences, vol. 63, no. 12, pp. 3421–3436, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Cheng and K. M. Xu, “Simulation of shallow cumuli and their transition to deep convective clouds by cloud-resolving models with different third-order turbulence closures,” Quarterly Journal of the Royal Meteorological Society, vol. 132, no. 615, pp. 359–382, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Takemi, “An eddy-resolving simulation of the diurnal variation of fair-weather convection and tracer transport,” Atmospheric Research, vol. 89, no. 3, pp. 270–282, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. G. Matheou, D. Chung, L. Nuijens, B. Stevens, and J. Teixeira, “On the fidelity of large-eddy simulation of shallow precipitating cumulus convection,” Monthly Weather Review, vol. 139, pp. 2918–2939, 2011.
  30. M. Xue, K. K. Droegemeier, and V. Wong, “The Advanced Regional Prediction System (ARPS) - A multi-scale nonhydrostatic atmospheric simulation and prediction model. Part I: model dynamics and verification,” Meteorology and Atmospheric Physics, vol. 75, no. 3-4, pp. 161–193, 2000. View at Scopus
  31. M. Xue, K. K. Droegemeier, V. Wong et al., “The Advanced Regional Prediction System (ARPS)—a multi-scale nonhydrostatic atmospheric simulation and prediction tool. Part II: model physics and applications,” Meteorology and Atmospheric Physics, vol. 76, no. 3-4, pp. 143–165, 2001. View at Scopus
  32. T. Takemi, M. Yasui, J. Zhou, and L. Liu, “Role of boundary layer and cumulus convection on dust emission and transport over a midlatitude desert area,” Journal of Geophysical Research D, vol. 111, no. 11, Article ID D11203, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Mikami, G. Y. Shi, I. Uno et al., “Aeolian dust experiment on climate impact: an overview of Japan-China joint project ADEC,” Global and Planetary Change, vol. 52, no. 1–4, pp. 142–172, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. T. Takemi, “Structure and evolution of a severe squall line over the arid region in Northwest China,” Monthly Weather Review, vol. 127, no. 6, pp. 1301–1309, 1999. View at Scopus
  35. T. Takemi, “Explicit simulations of convective-scale transport of mineral dust in severe convective weather,” Journal of the Meteorological Society of Japan, vol. 83, no. 3, pp. 187–203, 2005. View at Scopus
  36. M. Liu and D. L. Westphal, “A study of the sensitivity of simulated mineral dust production to model resolution,” Journal of Geophysical Research D, vol. 106, no. 16, pp. 18099–18112, 2001. View at Scopus
  37. D. L. Westphal, O. B. Toon, and T. N. Carlson, “A case study of mobilization and transport of Saharan dust,” Journal of the Atmospheric Sciences, vol. 45, no. 15, pp. 2145–2175, 1988. View at Scopus
  38. T. Takemi, “Evaporation of rain falling below a cloud base through a deep atmospheric boundary layer over an arid region,” Journal of the Meteorological Society of Japan, vol. 77, no. 2, pp. 387–397, 1999. View at Scopus
  39. D. R. Durran, Numerical Methods for Wave Equations in Geophysical Fluid Dynamics, Springer, Berlin, Germany, 1999.